【題目】設(shè)橢圓C的兩個焦點(diǎn)是,且橢圓C與圓有公共點(diǎn).

1)求實(shí)數(shù)a的取值范圍;

2)若橢圓C上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓C的方程;

3)對(2)中的橢圓C,直線lC交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】1;(2;(3

【解析】

(1)根據(jù)橢圓C與圓有公共點(diǎn),可轉(zhuǎn)換為聯(lián)立方程有解即可.

(2)設(shè)橢圓上的點(diǎn),再求出到焦點(diǎn)的距離,分析取最短距離時的情況,再列式求解橢圓中基本量的關(guān)系即可.

(3)聯(lián)立直線與橢圓的方程,求出MN的垂直平分線,代入即可得的關(guān)系,再根據(jù)判別式與的關(guān)系列出不等式進(jìn)行求解即可.

(1)由已知,,所以方程 有實(shí)數(shù)解,從而.

,所以,a的取值范圍是.

(2)設(shè)橢圓上的點(diǎn)到一個焦點(diǎn)的距離為,

因為 ,,

因為.所以當(dāng),

,故橢圓方程為

(3)

因為直線與橢圓交于不同兩點(diǎn),所以,.

設(shè), ,故線段的中點(diǎn).
又線段的垂直平分線橫過點(diǎn),所以,.

.,,解得,

,

故實(shí)數(shù)m的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),分別為的內(nèi)心、重心,當(dāng)軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, , .

(1)求證:平面平面

(2)已知中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

時間代號t

1

2

3

4

5

6

7

8

9

廣告收入y(千萬元)

2

2.2

2.5

2.8

3

2.5

2.3

2

1.8

根據(jù)這9年的數(shù)據(jù),對ty作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對ty作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984

(Ⅰ)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,

方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測;方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測.

從實(shí)際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?

附:

相關(guān)性檢驗的臨界值表:

n-2

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(Ⅱ)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,某班級有五名同學(xué)在該網(wǎng)站購買了這本書,其中三人只購買了電子書,另兩人只購買了紙質(zhì)書,從這五人中任取兩人,求兩人都購買了電子書的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn

1)求證:數(shù)列{an}是等比數(shù)列;

2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站AB,地鐵在AB部分為直線段,現(xiàn)要求市中心OAB的距離為,設(shè)地鐵在AB部分的總長度為

按下列要求建立關(guān)系式:

設(shè),將y表示成的函數(shù);

設(shè),mn表示y

A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn為等差數(shù)列{an}的前n項和,a42S618

1)求an;

2)設(shè)Tn|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

同步練習(xí)冊答案