【題目】在多面體底面是梯形四邊形是正方形,,..

(1)求證平面平面;

(2)設(shè)為線段上一點(diǎn),,試問在線段上是否存在一點(diǎn)使得平面,若存在試指出點(diǎn)的位置;若不存在,說明理由?

(3)(2)的條件下,求點(diǎn)到平面的距離.

【答案】(1)見解析.(2)見解析.(3).

【解析】

分析:(1)在梯形,過點(diǎn)作可得,所以,由面,可得出,利用線面垂直的判定定理得平面,進(jìn)而可得平面平面;(2)在線段上取點(diǎn),使得,連接,先證明相似,于是得由線面平行的判定定理可得結(jié)果;(3)點(diǎn)到平面的距離就是點(diǎn)到平面的距離,設(shè)到平面的距離為,利用體積相等可得,,解得.

詳解(1)因?yàn)槊?/span>,面,,所以,.

故四邊形是正方形,所以.

,,∴.,

,∴.

因?yàn)?/span>平面,平面.

平面,

平面,∴平面平面.

(2)在線段上存在點(diǎn)使得平面

在線段上取點(diǎn),使得,連接.

因?yàn)?/span>,所以相似所以

平面,平面,所以平面.

(3)點(diǎn)到平面的距離就是點(diǎn)到平面的距離,設(shè)到平面的距離為,利用同角相等可得,,可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對某市工薪階層關(guān)于樓市限購令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對樓市限購令贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對樓市限購令的態(tài)度有差異;

月收入不低于55百元的人數(shù)

月收入低于55百元的人數(shù)

合計(jì)

贊成

a=______________

c=______________

______________

不贊成

b=______________

d=______________

______________

合計(jì)

______________

______________

______________

(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。

參考公式:,其中.

參考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì);對任意的、,,與兩數(shù)中至少有一個(gè)屬于

1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

2)證明:,且

3)當(dāng)時(shí),若,求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在距離為的兩條直線,使得對任意的都有,則稱函數(shù)有一個(gè)寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)寫出曲線C的極坐標(biāo)方程;

(2)設(shè)點(diǎn)M的極坐標(biāo)為,過點(diǎn)M的直線與曲線C交于A、B兩點(diǎn),若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家放開二胎政策后,不少家庭開始生育二胎,隨機(jī)調(diào)查110名性別不同且為獨(dú)生子女的高中生,其中同意生二胎的高中生占隨機(jī)調(diào)查人數(shù)的,統(tǒng)計(jì)情況如下表:

同意

不同意

合計(jì)

男生

20

女生

20

合計(jì)

110

(l)求,的值

(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為同意生二胎與性別有關(guān)?請說明理由.

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若射線與曲線交于兩點(diǎn),與直線交于點(diǎn),射線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)zbi(bR)是純虛數(shù),i是虛數(shù)單位.

(1)求復(fù)數(shù)z

(2)若復(fù)數(shù)(mz)2所表示的點(diǎn)在第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若,則當(dāng)時(shí),函數(shù)的圖象是否總在直線上方?請寫出判斷過程.

查看答案和解析>>

同步練習(xí)冊答案