【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.

【答案】
(1)證明:記f(x)=|x﹣1|﹣|x+2|=

由﹣2<﹣2x﹣1<0解得﹣ <x< ,則M=(﹣ , ).

∵a、b∈M,∴ ,

所以| a+ b|≤ |a|+ |b|< × + × =


(2)解:由(1)得a2 ,b2

因為|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2

=(4a2﹣1)(4b2﹣1)>0,

所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.


【解析】(1)利用絕對值不等式的解法求出集合M,利用絕對值三角不等式直接證明:| a+ b|< ;(2)利用(1)的結(jié)果,說明ab的范圍,比較|1﹣4ab|與2|a﹣b|兩個數(shù)的平方差的大小,即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號,以及對不等式的證明的理解,了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學歸納法等.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分) 某校為了解高一期末數(shù)學考試的情況,從高一的所有學生數(shù)學試卷中隨機抽取份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在的學生人數(shù)為6.

直方圖中的值;

試估計所抽取的數(shù)學成績的平均數(shù);

)試根據(jù)樣本估計該校高一學生期末數(shù)學考試成績的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、F分別是橢圓C: + =1(a>b>0)的左頂點、右焦點,點P為橢圓C上一動點,當PF⊥x軸時,AF=2PF.
(1)求橢圓C的離心率;
(2)若橢圓C存在點Q,使得四邊形AOPQ是平行四邊形(點P在第一象限),求直線AP與OQ的斜率之積;
(3)記圓O:x2+y2= 為橢圓C的“關(guān)聯(lián)圓”.若b= ,過點P作橢圓C的“關(guān)聯(lián)圓”的兩條切線,切點為M、N,直線MN的橫、縱截距分別為m、n,求證: + 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若命題“x0∈R,使得x02+mx0+2m﹣3<0”為假命題,則實數(shù)m的取值范圍是(
A.[2,6]
B.[﹣6,﹣2]
C.(2,6)
D.(﹣6,﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.

1)求該一元二次函數(shù);

2)要將該函數(shù)圖象的頂點平移到原點,請說出平移的方式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于點F,若BF=FC=3,DF=FE=2.

(1)求證:ADAB=AEAC;
(2)求線段BC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面, , , , 分別為線段上的點,且, , .

1)求證 平面

2)若與平面所成的角為,求平面與平面所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二項式的展開式中只有第6項的二項式系數(shù)最大,且展開式中的第3項的系數(shù)是第4項的系數(shù)的3倍,則的值為( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)討論函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習冊答案