在平面直角坐標(biāo)xOy中,不等式組
-1≤x≤2
0≤y≤2
表示的平面區(qū)域為W,從區(qū)域W中隨機(jī)任取一點(diǎn)M(x,y).
(1)若x∈R,y∈R,求|OM|≥1的概率;
(2)若x∈Z,y∈Z,求點(diǎn)M位于第一象限的概率.
考點(diǎn):幾何概型
專題:計算題,概率與統(tǒng)計
分析:(1)這是一個幾何概率模型.算出圖中以(0,0)圓心1為半徑的圓的面積,再除以所有點(diǎn)M構(gòu)成的平面區(qū)域的面積,即可求出概率;
(2)確定平面區(qū)域整數(shù)點(diǎn)坐標(biāo)個數(shù),再找出第一象限中的點(diǎn)個數(shù).二者做除法即可算出概率.
解答: 解:(1)如圖,所有點(diǎn)M構(gòu)成的平面區(qū)域的面積為:3×2=6,----------(2分)
其中滿足|OM|≥1的M點(diǎn)構(gòu)成的區(qū)域為:{(x,y)|x2+y2≥1,-1≤x≤2,0≤y≤2},---(3分)
其面積為:6-
π
2
,--------------------------(5分)
記“|OM|≥1”為事件A,則P(A)=
6-
π
2
6
=1-
π
12
,----------(7分)
(2)在區(qū)域W中,滿足x∈Z,y∈Z的點(diǎn)M(x,y)有:(-1,0),(0,0),(1,0),(2,0),(-1,1),(0,1),(1,1),(2,1),(-1,2),(0,2),(1,2),(2,2)
共有12個,----------------------------(10分)
其中落在第一象限的有:(1,1),(2,1),(1,2),(2,2)共4個,------------(12分)
記“點(diǎn)M位于第一象限”為事件B,則P(B)=
4
12
=
1
3
.---------------------(14分)
點(diǎn)評:概率模型包括古典概型與幾何概型,區(qū)分的方法在于基本事件的有限與無限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列:4,a,12,b中,前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,則b=( 。
A、20B、18C、16D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
3
),
(1)求y的最大值及取得最大值時x的集合.
(2)用五點(diǎn)法作出它在長度為一個周期的閉區(qū)間上的簡圖;
(3)說明y=2sin(2x+
π
3
)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
2013
2014
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在(0,+∞),對于任意x>1都有f(x)>0,且f(
x
y
)=f(x)-f(y).
(Ⅰ)求證f(x)在定義域(0,+∞)為增函數(shù).
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n的和Sn,且3tSn-(2t+3)Sn-1=3t,其中t>0,n∈N*,n≥2.nnnn
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)設(shè)數(shù)列{an}的公比為f(t),數(shù)列b1=1,bn=f(
1
bn-1
)(n≥2)
,求數(shù)列{bn}的通項.
(3)記Tn=b1b2-b2b3+b3b4-b4b5+…-b2nb2n+1,求證:Tn≤-
20
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,且AD=AB=AA1=2,∠BAD=60°,E為AB的中點(diǎn).
(1)證明:AC1∥平面EB1C;
(2)求三棱錐C1-EB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x-1|+|x-2|<m,(m∈M)的解集非空.
(1)求集合M;
(2)若a,b∈M,求證:ab+1>a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-14x+40=0的根.
(1)求{an}的通項公式;
(2)求數(shù)列{an+2n}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案