給出下列四個命題,其中正確的一個是( 。
A、兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近0
B、對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”可信程度越大
C、相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D、在線性回歸方程
y
=0.2x+12中,當(dāng)x每增加1個單位時,預(yù)報量平均增加0.2個單位
考點:命題的真假判斷與應(yīng)用
專題:概率與統(tǒng)計
分析:利用線性回歸的有關(guān)知識即可判斷出.
解答: 解:A.兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近0或1,因此不正確;
B.對分類變量X與Y的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”可信程度越大,因此不正確;
C.指數(shù)R2用來刻畫回歸效果,R2越大,則殘差平方和越大,模型的擬合效果越好,因此不正確.
D.在線性回歸方程
y
=0.2x+12中,當(dāng)x每增加1個單位時,預(yù)報量平均增加0.2個單位,正確.
綜上可知:只有D正確.
故選:D.
點評:本題考查了線性回歸的有關(guān)知識,考查了推理能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機變量ξ~B(100,0.3),則D(2ξ-5)等于( 。
A、120B、84C、79D、42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若n為正奇數(shù),則7n+Cn17n-1+Cn27n-2+…+Cnn被9除所得余數(shù)是( 。
A、0B、3C、1D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x(x-1)(x-2)…(x-1000),則f′(0)=( 。
A、501!B、500!
C、-1000!D、1000!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+i2014
1+i
在復(fù)平面上所對應(yīng)的點為P,則點P坐標(biāo)是( 。
A、(1,0)
B、(-1,0)
C、(0,0)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3sin(2x+
π
6
),則它的一條對稱軸方程為( 。
A、x=0
B、x=-
π
12
C、x=
π
6
D、x=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒子中裝有編號為1,2,3,4,5,6,7,8,9的九個球,從中任意取出兩個,則這兩個球的編號之積為偶數(shù)的概率是(  )
A、
5
9
B、
1
6
C、
13
18
D、
5
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,并且滿足a1=2,nan+1=Sn+n(n+1)
(1)求數(shù)列{an}的通項公式;
(2)令Tn=
Sn
2n
,當(dāng)n≥3時,求證:Tn>Tn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個由卡片組成的集合,每張卡片上印有從1到30中的一個數(shù)字(這些卡片上的數(shù)字可以重復(fù)).讓每個學(xué)生取一張卡片.然后,老師對學(xué)生進行這樣的提問:他讀出一組數(shù)(可能只有一個),并請所持卡片上的數(shù)在這組數(shù)內(nèi)的學(xué)生舉手.試問為了確定每個學(xué)生的卡片上的數(shù),老師必須進行多少次這樣的提問(給出提問的次數(shù),并證明它是最小的.注意:不一定必須有30個學(xué)生)?

查看答案和解析>>

同步練習(xí)冊答案