(本小題共12分)
已知函數(shù),
(1)若對于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個(gè)極值點(diǎn),且,求證:;
(3)設(shè)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.
(1),(2) ()
,,且 ()--
()
設(shè) ,
即
(Ⅲ)
解析試題分析:(1), ,設(shè),
當(dāng)時(shí),,當(dāng)時(shí),
,
(2) ()
解法(一),,且 ()--
()
設(shè) ,
即
解法(二),,且 ()
由的極值點(diǎn)可得
(Ⅲ),
所以在上為增函數(shù),,所以,得
,設(shè) ()
,由在恒成立,
① 若,則所以在遞減,此時(shí)不符合;
②時(shí),,在遞減,此時(shí)不符合;
③時(shí),,若,則在區(qū)間)上遞減,此時(shí)不符合;
綜合得,即實(shí)數(shù)的取值范圍為
考點(diǎn):本題考查了導(dǎo)函數(shù)的運(yùn)用
點(diǎn)評:導(dǎo)數(shù)本身是個(gè)解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/3/1cgvr3.png" style="vertical-align:middle;" />,其中a、b為任
意正實(shí)數(shù),且a<b。
(1)當(dāng)A=時(shí),研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,其中.
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)時(shí),在區(qū)間上為減函數(shù);
(3)當(dāng),函數(shù)的圖象恒在函數(shù)圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(II)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)是定義在上的偶函數(shù),已知當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點(diǎn)能作幾條直線與曲線相切?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com