甲:函數(shù),f(x)是R上的單調(diào)遞增函數(shù);乙:?x1<x2,f(x1)<f(x2),則甲是乙的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性的定義和性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷.
解答: 解:根據(jù)函數(shù)單調(diào)性的定義可知,若f(x)是 R上的單調(diào)遞增函數(shù),則?x1<x2,f(x1)<f(x2),成立,∴命題乙成立.
若:?x1<x2,f(x1)<f(x2),則不滿足函數(shù)單調(diào)性定義的任意性,∴命題甲不成立.
∴甲是乙成立的充分不必要條件.
故選:A.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)單調(diào)性的定義和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為1,在正方體的側(cè)面BCB1C1上到點(diǎn)A距離為
2
3
3
的點(diǎn)的集合形成一條直線,那么這條曲線的形狀是
 
,它的長度是
 

若將“在正方體的側(cè)面BCC1B1上到點(diǎn)A距離為
2
3
3
的點(diǎn)的集合”改為在正方體表面上與點(diǎn)P的距離為
2
3
3
的點(diǎn)的集合”那么這條曲線的形狀又是
 
,它的長度又是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(三角函數(shù)中的圖象重合對(duì)稱問題)設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移
π
3
個(gè)單位長度后,所得的圖象與原圖象重合,則ω的最小值等于
 
,如果所得圖象關(guān)于x軸對(duì)稱,則ω的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
|x|的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC=BC,D為AB的中點(diǎn),且AB1⊥A1C
(1)AB1⊥A1D;
(2)證明:BC1∥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出命題“如果一個(gè)整數(shù)的末位數(shù)是0,則這個(gè)整數(shù)可以被5整除”的逆命題、否命題、逆否命題,并判斷其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線3x+(1-a)y+5=0與直線x-y=0平行,求a的值;
(2)已知直線(b-4)x+y+1=0與直線2x+3y-5=0垂直,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使不等式23x-1-2>0成立的x的取值范圍
 
(用集合表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:x→ln|x|是集合M到集合N的映射,若N={0,1},則M不可能是( 。
A、{1,e}
B、{-1,1,e}
C、{1,-e,e}
D、{0,1,e}

查看答案和解析>>

同步練習(xí)冊(cè)答案