19.設(shè) f(x)=2x-1,g(x)=x+1,則 f[g(x)]=2x+1.

分析 要求f[g(x)]的解析式,只要將f(x)的解析式中的x換為g(x),利用g(x)的解析式,化簡(jiǎn)即可.

解答 解:∵f(x)=2x-1,g(x)=x+1,
∴f[g(x)]=2g(x)-1
=2(x+1)-1
=2x+1,
即f[g(x)]=2x+1,
故答案為:2x+1.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求解及常用方法:代換法,求解時(shí)必須注意自變量與函數(shù)的相對(duì)關(guān)系,本題是一道基礎(chǔ)題,必須掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知冪函數(shù)f(x)=xα圖象過(guò)點(diǎn)$(\sqrt{2},2)$,則f(9)=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=-x2+2x+3在區(qū)間[0,4)上的值域是( 。
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.?dāng)?shù)列{an}是等差數(shù)列,數(shù)列{bn}滿足bn=anan+1an+2(n∈N*),設(shè)Sn為{bn}的前n項(xiàng)和,若${a_{12}}=\frac{5}{8}{a_5}>0$,則當(dāng)Sn取得最大值時(shí)n的值為( 。
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB.
(Ⅰ)證明:BC1∥平面A1CD
(Ⅱ)求點(diǎn)C1到平面DA1C的距離.
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.求函數(shù)y=$\frac{lg(4-x)}{\sqrt{{x}^{2}-2x-3}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線y=x+1與橢圓mx2+my2=1(m>n>0)相交于A,B兩點(diǎn),若弦AB的中點(diǎn)的橫坐標(biāo)等于-$\frac{1}{3}$,則雙曲線$\frac{y^2}{m^2}-\frac{x^2}{n^2}$=1的離心率等于(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)定義在實(shí)數(shù)集R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若實(shí)數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(-1),則a的取值范圍是( 。
A.[2,+∞]∪(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓E的兩個(gè)焦點(diǎn)分別為(0,-1)和(0,1),離心率e=$\frac{\sqrt{2}}{2}$
(1)求橢圓E的方程
(2)若直線l:y=kx+m(k≠0)與橢圓E交于不同的兩點(diǎn)A、B,且線段AB的垂直平分線過(guò)定點(diǎn)P(0,$\frac{1}{2}$),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案