10.函數(shù)y=-x2+2x+3在區(qū)間[0,4)上的值域是(  )
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

分析 由函數(shù)的解析式,我們可以分析函數(shù)的開口方向及對稱軸,結(jié)合二次函數(shù)的性質(zhì),易求出函數(shù)的最大值和最小值,進(jìn)而得到函數(shù)的值域.

解答 解:函數(shù)y=-x2+2x+3的圖象是開口朝下,且以x=1為對稱軸的拋物線
故在區(qū)間[0,4)
當(dāng)x=1時(shí),ymax=-1+2+3=4
當(dāng)x=4時(shí),ymin=-16+8+3=-5
故函數(shù)y=-x2+2x+3在區(qū)間[0,4)上的值域?yàn)椋?5,4].
故選:D

點(diǎn)評 本題考查的知識點(diǎn)二次函數(shù)在閉區(qū)間上的最值,其中分析出函數(shù)的圖象和性質(zhì)進(jìn)而分析出函數(shù)的最值,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+sinx+ex•cosx
(1)求該函數(shù)的導(dǎo)數(shù)f′(x)
(2)求函數(shù)f(x)在x=0處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.把二進(jìn)制數(shù)101011(2)化為十進(jìn)制數(shù)(  )
A.41B.43C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)g(x) 的一個(gè)單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[-$\frac{π}{3}$,$\frac{π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,AB=AC=1,$BC=\sqrt{3}$,則向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.集合A={x|x2-2x>0},B={y|y=2x,x∈R},R是實(shí)數(shù)集,則(∁RB)∪A等于( 。
A.RB.(-∞,0]∪(2,+∞)C.(0,1]D.(-∞,1]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖在直角梯形ABCD中AB=2AD=2DC,E為BC邊上一點(diǎn),$\overrightarrow{BC}=3\overrightarrow{EC}$,F(xiàn)為AE的中點(diǎn),則$\overrightarrow{BF}$=( 。
A.$\frac{1}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AD}$B.$\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}$C.$-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$D.$-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè) f(x)=2x-1,g(x)=x+1,則 f[g(x)]=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點(diǎn),F(xiàn)為線段EC(端點(diǎn)除外)上一動點(diǎn),現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABCF.在平面ABD內(nèi)過點(diǎn)D作DK⊥AB,K為垂足,設(shè)AK=t,則t的取值范圍是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{3}}{2}$,2)D.($\frac{\sqrt{3}}{2}$,1)

查看答案和解析>>

同步練習(xí)冊答案