6.設(shè)F1,F(xiàn)2是雙曲線$\frac{x^2}{8}-{y^2}$=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,則點P到x軸的距離為(  )
A.$\sqrt{7}$B.3C.$\frac{1}{3}$D.$\frac{{\sqrt{7}}}{7}$

分析 由題設(shè)條件,先利用雙曲線的基本性質(zhì)求出△F1PF2的面積,再由三角形的面積公式能求出結(jié)果.

解答 解:設(shè)|PF1|=x,|PF2|=y,(x>y)
∵a2=8,∴根據(jù)雙曲線性質(zhì)可知x-y=4$\sqrt{2}$,
∵∠F1PF2=90°,c=3,
∴x2+y2=36,
∴2xy=x2+y2-(x-y)2=4,
∴xy=2,
∴△F1PF2的面積為$\frac{1}{2}$xy=1,
設(shè)點P到x軸的距離為h,則$\frac{1}{2}•h•6$=1
∴h=$\frac{1}{3}$.
故選:C.

點評 本題考查了雙曲線的定義,性質(zhì),運用解決距離問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點$(0,\sqrt{3})$,離心率為$\frac{1}{2}$,左右焦點分別為F1(-c,0),F(xiàn)2(c,0).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=x+1與橢圓交于A,B兩點,與以線段F1F2為直徑的圓交于C,D兩點,求$\frac{|AB|}{|CD|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線x-2y+3=0與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,B兩點,且P(-1,1)恰好為AB中點,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式|x-5|+|x+1|<8的解集為( 。
A.(-∞,2)B.(-2,6)C.(6,+∞)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系xOy中,點A(-2,6)關(guān)于直線3x-4y+5=0的對稱點的坐標(biāo)為(4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式$\frac{4}{x-2}>x-2$的解集是( 。
A.(-∞,0)∪(2,4)B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的函數(shù)f(x),g(x)滿足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,若有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\},n∈{N^*}$的前n項和為$\frac{255}{256}$,則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(Ⅰ)設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,計算f(f(-4))的值;
(Ⅱ)計算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)計算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$y=\sqrt{1-{{(x-1)}^2}},x∈[1,2]$,對于滿足1<x1<x2<2的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;            ②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0;      ④(x2-x1)[f(x2)-f(x1)]>0
其中正確結(jié)論有②③(寫上所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案