如圖,在四面體ABCD中,CB=CD=BD,AD⊥BD,點E,F(xiàn)分別是AB,BD的中點.
(1)求證EF∥平面ACD;
(2)求BC與平面EFC所成的角.
考點:直線與平面平行的判定,直線與平面所成的角
專題:空間位置關系與距離
分析:(1)由已知得EF∥AD,由此能證明EF∥平面ACD.
(2)由(1)知EF∥AD,而AD⊥BD,從而BD⊥EF,又CF⊥BD,從而BD⊥平面EFC,∠BCF為BC與平面EFC所成的角,由此能求出BC與平面EFC所成的角.
解答: (1)證明:∵E,F(xiàn)分別是AB,BD的中點,
∴EF∥AD,
又EF不包含于平面ACD,AD?平面ACD,
∴EF∥平面ACD.
(2)解:由(1)知EF∥AD,而AD⊥BD,
∴BD⊥EF,
又∵CB=CD,F(xiàn)為BD的中點,
∴CF⊥BD,又CF∩EF=F,
∴BD⊥平面EFC,
∴∠BCF為BC與平面EFC所成的角,
在等邊△BCD中,∵F是BD中點,∴∠BCF=30°,
∴BC與平面EFC所成的角為30°.
點評:本題考查直線與平面平行的證明,考查直線與平面所成角的大小的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若a∈R,則a=0是a(a-1)=0的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(
2
,
2
2
)且離心率為
3
2

(1)求橢圓C的方程;
(2)已知A、B是橢圓C的左、右頂點,動點M滿足MB⊥AB,連接AM交橢圓于點P,在x軸上是否存在異于點A、B的定點Q,使得直線BP和直線MQ垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a≠0),且不等式f(x)<2x的解集為(-1,2).
(1)方程f(x)+3a=0有兩個相等的實根,求f(x)的解析式.
(2)f(x)的最小值不大于-3a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a0∈R,an+1=2n-3an,(n=0,1,2,…)
(1)設bn=
an
2n
,試用a0,n表示bn(即求數(shù)列{bn}的通項公式);
(2)求使得數(shù)列{an}遞增的所有a0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(I)已知集合A={x|x2-x-6>0},B={x|0<x+a<4},若A∩B=∅,求實數(shù)a的取值范圍;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙丙丁四個人做傳球練習,球首先由甲傳出,每個人得到球后都等概率地傳給其余三個人之一,設Pn表示經(jīng)過n次傳遞后球回到甲手中的概率,求:
(1)P2之值;
(2)Pn(以n表示過n次傳遞后球落在甲的手中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)fn(x)=xn(1-x)2在(
1
4
,1)上的最大值為an(n=1,2,3,…).
(1)求數(shù)列{an}的通項公式;
(2)求證:對任何正整數(shù)n(n≥2),都有an
1
(n+2)2
成立;
(3)設數(shù)列{an}的前n項和為Sn,求證:對任意正整數(shù)n,都有Sn
13
27
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一條曲線C1在y軸右邊,C1上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1,C2
x2
4
+
y2
3
=1,過點F的直線l交C1于A,C兩點,交C2于B,D兩點,
(1)求曲線C1方程.
(2)是否存在直線l,使kOA+kOB+kOC+kOD=0(kOA,kOB,kOC,kOD為斜率),若存在,求出所有滿足條件的直線l;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案