【題目】已知橢圓的左、右焦點分別為,,是橢圓上在第二象限內(nèi)的一點,且直線的斜率為.

(1)求點的坐標(biāo);

(2)過點作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點,是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.

【答案】(1);(2)存在,使得

【解析】

1)由和直線的斜率可得方程;代入橢圓方程解方程即可求得點坐標(biāo);(2)由點坐標(biāo)得:軸;假設(shè)直線,代入橢圓方程可求得的范圍和韋達(dá)定理的形式,利用韋達(dá)定理表示出,可整理出,從而可得;結(jié)合軸可知,進而得到結(jié)果.

(1)由及直線的斜率為得直線的方程為:

代入橢圓方程整理得:

解得:(舍),則:

點的坐標(biāo)為

(2)由得:

設(shè)直線的方程為:

代入橢圓方程整理得:

由直線與橢圓交于,兩點得:

結(jié)合,解得:

由韋達(dá)定理得:,

直線的傾斜角互補,從而

結(jié)合軸得:,故

綜上所述:存在,使得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若中心在原點的橢圓與雙曲線有共同的焦點,且它們的離心率互為倒數(shù),圓的直徑是橢圓的長軸,C是橢圓的上頂點,動直線AB過C點且與圓交于A、B兩點,CD垂直于AB交橢圓于點D.

(1)求橢圓的方程;

(2)求面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}是遞減數(shù)列,前n項的積為Tn,若T13=4T9,則a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由題意可得 q1,且 an 0,由條件可得 a1a2…a13=4a1a2…a9,化簡得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比數(shù)列{an}是遞增數(shù)列,其前n項的積為Tn(n∈N*),若T13=4T9 ,設(shè)公比為q,

則由題意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比數(shù)列的性質(zhì)可得 a8a15=a10a13=a11a12,∴a8a15=2.

故選:A.

【點睛】

本題主要考查等比數(shù)列的定義和性質(zhì),求得 a10a11a12a13=4是解題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】若直線y=2x上存在點(xy)滿足約束條件,則實數(shù)m的最大值為

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.

(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、是函數(shù),)的兩個不同的零點,且、、適當(dāng)排序后可構(gòu)成等差數(shù)列,也可適當(dāng)排序后構(gòu)成等比數(shù)列,則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機對學(xué)習(xí)成績的影響,部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

總計

學(xué)習(xí)成績優(yōu)秀

4

8

12

學(xué)習(xí)成績不優(yōu)秀

16

2

18

總計

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認(rèn)為使用智能手機對學(xué)習(xí)成績有影響?

(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機抽取2名同學(xué),求抽到不使用智能手機的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面為線段的中點, ,四邊形為邊長為1的正方形,平面平面,,為棱的中點.

(1)若為線上的點,且直線平面,試確定點的位置;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過拋物線的焦點且與此拋物線交于,兩點,,直線與拋物線交于,兩點,且,兩點在軸的兩側(cè).

(1)證明:為定值;

(2)求直線的斜率的取值范圍;

(3)若為坐標(biāo)原點),求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案