【題目】解關(guān)于的不等式: .
【答案】見解析
【解析】試題分析:討論a=0、a>0和a<0時(shí),分別求出對應(yīng)不等式的解集即可.
詳解:不等式ax2+(2﹣a)x﹣2>0化為(ax+2)(x﹣1)>0,
當(dāng)a=0時(shí),不等式化為x﹣1>0,
解得x>1;
當(dāng)a>0時(shí),不等式化為(x+)(x﹣1)>0,
且﹣<1,解不等式得x<﹣或x>1;
當(dāng)a<0時(shí),不等式化為(x+)(x﹣1)<0,
若a<﹣2,則﹣<1,解不等式得﹣<x<1;
若a=﹣2,則﹣=1,不等式化為(x﹣1)2<0,解得x∈;
若﹣2<a<0,則﹣>1,解不等式得1<x<﹣;
綜上,a=0時(shí)不等式的解集為{x|x>1};
a>0時(shí)不等式的解集為{x|x<﹣或x>1};
a<﹣2時(shí),不等式的解集為{x|﹣<x<1};
a=﹣2時(shí),不等式的解集為;
﹣2<a<0時(shí),不等式的解集為{x|1<x<﹣}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】喬經(jīng)理到老陳的果園里一次性采購一種水果,他倆商定:喬經(jīng)理的采購價(jià)(元/噸)與采購量(噸)之間函數(shù)關(guān)系的圖像如圖中的折線段所示(不包含端點(diǎn)但包含端點(diǎn)).
(1)求與之間的函數(shù)關(guān)系式;
(2)已知老陳種植水果的成本是2800元/噸,那么喬經(jīng)理的采購量為多少時(shí),老陳在這次買賣中所獲的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是( )
A.命題“若 ,則 ”的逆命題為“若 ,則 ”
B.對于命題 ,使得 ,則 ,則
C.“ ”是“ ”的充分不必要條件
D.若 為假命題,則 均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了提高收視率而舉辦有獎問答活動,隨機(jī)對該市15~65歲的人群抽樣了 人,回答問題統(tǒng)計(jì)結(jié)果及頻率分布直方圖如圖表所示.
(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎,求所抽取的人中第2組至少有1人獲得幸運(yùn)獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且f=,求tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,點(diǎn) 在x軸的正半軸上,過點(diǎn)M的直線 與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若 ,且直線 的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線 繞點(diǎn)M如何轉(zhuǎn)動, 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,已知圓 ,點(diǎn) ,點(diǎn) ,以B為圓心, 為半徑作圓,交圓C于點(diǎn)P,且 的平分線交線段CP于點(diǎn)Q.
(1)當(dāng)a變化時(shí),點(diǎn)Q始終在某圓錐曲線 上運(yùn)動,求曲線 的方程;
(2)已知直線l過點(diǎn)C,且與曲線 交于M,N兩點(diǎn),記 面積為 , 面積為 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, , , , , 、分別在、上, ,現(xiàn)將四邊形沿折起,使平面平面.
()若,是否存在折疊后的線段上存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由.
()求三棱錐的體積的最大值,并求此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com