14.復(fù)數(shù)z=a+bi(a、b∈R)滿足|$\overline{z}$|+z=8+4i,求z.

分析 z=a+bi,$\overline{z}$=a-bi,由于|$\overline{z}$|+z=8+4i,可得$\sqrt{{a}^{2}+^{2}}$+a+bi=8+4i,利用復(fù)數(shù)相等即可得出.

解答 解:∵z=a+bi,$\overline{z}$=a-bi,
∵|$\overline{z}$|+z=8+4i,
∴$\sqrt{{a}^{2}+^{2}}$+a+bi=8+4i,
∴$\left\{\begin{array}{l}{\sqrt{{a}^{2}+^{2}}+a=8}\\{b=4}\end{array}\right.$,
解得b=4,a=3.
∴z=3+4i.

點評 本題考查了復(fù)數(shù)的運算性質(zhì)、模的計算公式、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=x2-1,g(x)=$\left\{\begin{array}{l}{x-1,x>0}\\{2-x,x<0}\end{array}\right.$
(1)求g(g(x))和g(f(x))的值;
(2)求f(g(x))和g(f(x))的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R
(1)函數(shù)的最小正周期;
(2)函數(shù)單調(diào)增區(qū)間;
(3)函數(shù)的最小值及取得最小值時x的值;
(4)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+ax-4a.
(1)若函數(shù)f(x)在(-∞,+∞)上有兩個零點,求實數(shù)a的取值范圍;
(2)若對任意實數(shù)x均有f(x)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)在它的定義域(-∞,+∞)內(nèi)具有單調(diào)性,且對任意實數(shù)x,都有f(f(x)+ex)=1-e,e是自然對數(shù)的底數(shù),則f(ln2)的值等于(  )
A.-2B.-1C.1D.1-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x1=3-2i是實系數(shù)一元二次方程x2+px+q=0的一個根.
(1)求方程的另一個根及p、q的值;
(2)求x12+x22的值;
(3)求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的值;
(4)求x13+x23的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,則m+$\frac{n}{2}$的最小值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知sinx-cosx=$\frac{1}{5}$(0≤x<π),則tanx等于( 。
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函數(shù)f(x)的最小值是f(-1)=0,f(0)=1且對稱軸是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在區(qū)間[t,t+2](t∈R)的最小值.

查看答案和解析>>

同步練習(xí)冊答案