7.如圖,ABCD-A′B′C′D′為長方體,底面是邊長為a的正方形,高為2a,M,N分別是CD和AD的中點.
(1)判斷四邊形MNA′C′的形狀;
(2)求四邊形MNA′C′的面積.

分析 (1)根據(jù)棱柱的幾何特征和三角形中位線定理,可得MN∥A′C′∥AC,且MN=$\frac{1}{2}$A′C′=$\frac{1}{2}$AC,進而可判斷四邊形MNA′C′的形狀;
(2)利用勾股定理,求出梯形的高,代入梯形面積公式,可得答案.

解答 解:(1)∵ABCD-A′B′C′D′為長方體,底面是邊長為a的正方形,M,N分別是CD和AD的中點.
∴AC=$\sqrt{2}$a,MN∥A′C′∥AC,且MN=$\frac{1}{2}$A′C′=$\frac{1}{2}$AC=$\frac{\sqrt{2}}{2}a$,
故四邊形MNA′C′為梯形;
(2)由長方體ABCD-A′B′C′D′的高為2a,
故梯形的高為$\sqrt{(2a)^{2}+(\frac{\sqrt{2}}{2}a-\frac{\sqrt{2}}{4}a)^{2}}$=$\frac{\sqrt{66}}{4}$a,
故四邊形MNA′C′的面積S=$\frac{1}{2}$($\frac{\sqrt{2}}{2}a$+$\sqrt{2}$a)×$\frac{\sqrt{66}}{4}$a=$\frac{3\sqrt{33}}{8}$a2

點評 本題考查的知識點是棱柱的幾何特征,梯形面積的求法,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知冪函數(shù)f(x)過點$(2,\sqrt{2})$,則滿足f(2-a)>f(a-1)的實數(shù)a的取值范圍是[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.用min{a,b}表示a,b二個數(shù)中的較小者.設f(x)=min{$lo{g}_{\frac{1}{4}}x+3,lo{g}_{2}x$},則f(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程y=$\sqrt{2}$x,原點到過A(a,0)、B(0,-b)點直線l的距離為$\frac{\sqrt{6}}{3}$.
(1)求雙曲線方程;
(2)過點Q(1,1)能否作直線m,使m與已知雙曲線交于兩點P1,P2,且Q是線段P1P2的中點?若存在,請求出其方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.不論m取什么實數(shù),直線(2m-1)x-(m+3)y-(m-11)=0恒過定點(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設點P(6,m)為雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的點,求點P到雙曲線右焦點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=(x-1)2+a(lnx-x+1)(其中a∈R,且a為常數(shù))
(1)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(2)在(1)的條件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某商品的價格為80元時,月銷售量為10000件,若價格每降低2元.需要量就會增加1000件,如果不考慮其他因素:(1)試求這商品的月銷售量與價格之間的函數(shù)關系式;
(2)若這種商品的進貨價是每件40元,銷售價為多少元時,月利潤收人最多.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知tanα=2,且α是第三象限角,求sin(kπ-α)+cos(kπ+α)的值.

查看答案和解析>>

同步練習冊答案