2.不論m取什么實(shí)數(shù),直線(2m-1)x-(m+3)y-(m-11)=0恒過(guò)定點(diǎn)(2,3).

分析 將直線的方程(m-2)x-y+3m+2=0是過(guò)某兩直線交點(diǎn)的直線系,故其一定通過(guò)某個(gè)定點(diǎn),將其整理成直線系的標(biāo)準(zhǔn)形式,求兩定直線的交點(diǎn)此點(diǎn)即為直線恒過(guò)的定點(diǎn).

解答 解:直線(2m-1)x-(m+3)y-(m-11)=0可為變?yōu)閙(2x-y-1)+(-x-3y+11)=0
令$\left\{\begin{array}{l}2x-y-1=0\\-x-3y+11=0\end{array}\right.$ 解得:$\left\{\begin{array}{l}x=2\\ y=3\end{array}\right.$,
故不論m為何值,直線(2m-1)x-(m+3)y-(m-11)=0恒過(guò)定點(diǎn)(2,3)
故答案為:(2,3).

點(diǎn)評(píng) 正確理解直線系的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)的奇偶性是(  )
A.奇函數(shù)B.偶函數(shù)
C.既不是奇函數(shù)也不是偶函數(shù)D.既是奇函數(shù)也是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等比數(shù)列{an}的前n項(xiàng)和Sn為,并且對(duì)任意的正整n數(shù)成立Sn+2=4Sn+3,則a2=(  )
A.2B.6C.2或6D.2或-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在正三棱柱ABC-A1B1C1中,E,F(xiàn),G是側(cè)面對(duì)角線上的點(diǎn),且BE=CF=AG,求證:平面EFG∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知α∈$(0,\frac{π}{2})$,β∈$(\frac{π}{2},π)$,且sinα>sinβ,則α與β的關(guān)系是( 。
A.0<β+α<$\frac{π}{2}$B.$\frac{π}{2}$<α+β<πC.π<α+β<$\frac{3}{2}$πD.$\frac{π}{2}$<α+β<$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,ABCD-A′B′C′D′為長(zhǎng)方體,底面是邊長(zhǎng)為a的正方形,高為2a,M,N分別是CD和AD的中點(diǎn).
(1)判斷四邊形MNA′C′的形狀;
(2)求四邊形MNA′C′的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B,A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x3-2ax-1,a≠0
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象由三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.用五點(diǎn)法作出函數(shù)y=1-2sinx,x∈[-π,π]的簡(jiǎn)圖,并回答下列問(wèn)題:
(1)若直線y=a與y=1-2sinx的圖象有兩個(gè)交點(diǎn),求a的取值范圍;
(2)求函數(shù)y=1-2sinx的最大值、最小值及相應(yīng)的自變量的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案