分析 (1)求導(dǎo)f′(x)=2(x-1)+a($\frac{1}{x}$-1)=(x-1)(2-$\frac{a}{x}$),且f(1)=0+a(ln1-1+1)=0,從而討論以確定函數(shù)的單調(diào)性,從而解得;
(2)化簡(jiǎn)f(x)+a+1=(x-1)2+a(lnx-x+1)+a+1,從而討論以確定函數(shù)的單調(diào)性,從而解得.
解答 解:(1)∵f(x)=(x-1)2+a(lnx-x+1),
∴f′(x)=2(x-1)+a($\frac{1}{x}$-1)=(x-1)(2-$\frac{a}{x}$);
且f(1)=0+a(ln1-1+1)=0,
①當(dāng)a≤2時(shí),f′(x)>0在(1,+∞)上恒成立,
故f(x)>=f(1)=0;
②當(dāng)a>2時(shí),
可知f(x)在(1,$\frac{a}{2}$)上是減函數(shù),在($\frac{a}{2}$,+∞)上是增函數(shù);
故f($\frac{a}{2}$)<0;
綜上所述,a≤2;
(2)f(x)+a+1=(x-1)2+a(lnx-x+1)+a+1,
當(dāng)a<0時(shí),f(x)+a+1在(0,1]上是減函數(shù),在(1,2]上是增函數(shù);
且$\underset{lim}{x→{0}^{+}}$((x-1)2+a(lnx-x+1)+a+1)=+∞,
f(1)+a+1=a+1,f(2)+a+1=1+a(ln2-1)+a+1;
故a+1=0或1+a(ln2-1)+a+1<0;
故a=-1或a<-$\frac{2}{ln2}$;
當(dāng)a=0時(shí),f(x)+a+1=(x-1)2+1>0,故不成立;
當(dāng)0<a<2時(shí),
f(x)+a+1在(0,$\frac{a}{2}$]上是增函數(shù),在($\frac{a}{2}$,1]上是減函數(shù),在(1,2]上是增函數(shù);
且$\underset{lim}{x→{0}^{+}}$((x-1)2+a(lnx-x+1)+a+1)=-∞,
f(1)+a+1=a+1>0,
故方程f(x)+a+1=0在x∈(0,2]上有且只有一個(gè)實(shí)根,
當(dāng)a=2時(shí),f(x)+a+1=(x-1)2+2(lnx-x+1)+2+1=(x-1)2+2(lnx-x+1)+3,
故f(x)在(0,2]上是增函數(shù);
且$\underset{lim}{x→{0}^{+}}$((x-1)2+2(lnx-x+1)+3)=-∞,f(1)=3>0;
故方程f(x)+a+1=0在x∈(0,2]上有且只有一個(gè)實(shí)根,
綜上所述,a<-$\frac{2}{ln2}$或a=-1或0<a≤2.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類(lèi)討論的思想應(yīng)用,同時(shí)考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com