分析 由函數(shù)性質(zhì)得f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,
∴f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-(0+1)=-1.
故答案為:-1.
點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{2}\;,\;\;\frac{2}{3}})$ | B. | $({-∞\;,\;\;\frac{2}{3}})$ | C. | $[{\frac{1}{2}\;,\;\;\frac{2}{3}})$ | D. | $({-∞\;,\;\;\frac{2}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,-3) | B. | (3,-5) | C. | (-5,3) | D. | (-5,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,log2(3x+1)>0 | B. | ¬p:?x∈R,log2(3x+1)>0 | ||
C. | ¬p:?x∈R,log2(3x+1)≤0 | D. | ¬p:?x∈R,log2(3x+1)≤0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com