已知向量
a
=(-2,-1),
b
=(λ,1),λ∈R.
(Ⅰ)當(dāng)λ=3時,求
a
b
及|
a
+
b
|;
(Ⅱ)若
a
b
的夾角的余弦值為正,λ的取值范圍.
考點:數(shù)量積表示兩個向量的夾角,向量的模,平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(Ⅰ)根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)向量坐標(biāo)求向量長度的方法即可求解本問;
(Ⅱ)根據(jù)數(shù)量積的坐標(biāo)運(yùn)算求出
a
b
,并且
a
b
>0
從而求出λ的范圍.
解答: 解:(Ⅰ)λ=3時,
b
=(3,1),
a
=(-2,-1)
;
a
b
=-6-1=-7
,
a
+
b
=(1,0),|
a
+
b
|=1
;
(Ⅱ)∵
a
b
的夾角的余弦值為正;
a
b
=-2λ-1>0
;
λ<-
1
2

∴λ的取值范圍為(-∞,-
1
2
).
點評:考查向量的數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)向量的坐標(biāo)求向量的長度,向量數(shù)量積的計算公式:
a
b
=|
a
||
b
|cosθ
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為坐標(biāo)原點O,右焦點為F(1,0),短軸長為2.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+b與橢圓C交于A,B兩點,且OA⊥OB,求證直線l與以原點為圓心的定圓相切,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.求{an}的前n項和Sn及使得Sn最大時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,-3,1),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(
1
2
x,試畫出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點,又二面角P-CD-B為45°
(1)求證:①AF∥平面PEC   
②平面PEC⊥平面PCD
(2)設(shè)AD=2,CD=2
2
,求③點A到平面PEC的距離④二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:y2=2px(p>0)上的點M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標(biāo);
(2)過點M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交與A、B兩點,且直線AB過點(0,-1),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
4
-y2=1的離心率為
 
,其漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為2的等比數(shù)列,則
a1+a2+a3
a3+a4+a5
的值為
 

查看答案和解析>>

同步練習(xí)冊答案