【題目】給出四個函數(shù):①;②;③;④,從其中任選個,則事件:“所選個函數(shù)圖象有且僅有個公共點”的概率是________.
【答案】
【解析】
給出四個函數(shù):①;②;③;④,從其中任選個,基本事件總數(shù)為,利用列舉法求出“所選個函數(shù)圖象有且僅有個公共點”包含的基本事件,由此能求出:“所選個函數(shù)圖象有且僅有個公共點”的概率.
給出四個函數(shù):①;②;③;④,
從其中任選個,基本事件總數(shù)為,
在同一直角坐標系中作出上述四個函數(shù)的圖象如下圖所示:
由圖象可知,①②中的兩個函數(shù)圖象有兩個交點,①③中的兩個函數(shù)圖象有無數(shù)個交點,①④中的兩個函數(shù)圖象有只有一個交點,②③中的兩個函數(shù)圖象有三個交點,②④中的兩個函數(shù)圖象只有一個交點,③④中的兩個函數(shù)圖象只有一個交點.
事件:“所選個函數(shù)圖象有且僅有個公共點”包含的基本事件是①②,
因此,事件:“所選個函數(shù)圖象有且僅有個公共點”的概率是.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.
(1)求證:平面PAD;
(2)在棱AB上是否存在一點F,使得平面平面PCE?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項為,公差為,等比數(shù)列的首項為,公比為,其中,且.
(1)求證:,并由推導(dǎo)的值;
(2)若數(shù)列共有項,前項的和為,其后的項的和為,再其后的項的和為,求的比值.
(3)若數(shù)列的前項,前項、前項的和分別為,試用含字母的式子來表示(即,且不含字母)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,分別是橢圓:的左、右焦點,且橢圓上的點到點的距離的最小值為.點M、N是橢圓上位于軸上方的兩點,且向量與向量平行.
(1)求橢圓的方程;
(2)當時,求△的面積;
(3)當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孔子曰:溫故而知新.數(shù)學(xué)學(xué)科的學(xué)習(xí)也是如此.為了調(diào)查數(shù)學(xué)成績與及時復(fù)習(xí)之間的關(guān)系,某校志愿者展開了積極的調(diào)查活動:從高三年級640名學(xué)生中按系統(tǒng)抽樣抽取40名學(xué)生進行問卷調(diào)查,所得信息如下:
數(shù)學(xué)成績優(yōu)秀(人數(shù)) | 數(shù)學(xué)成績合格(人數(shù)) | |
及時復(fù)習(xí)(人數(shù)) | 20 | 4 |
不及時復(fù)習(xí)(人數(shù)) | 10 | 6 |
(1)張軍是640名學(xué)生中的一名,他被抽中進行問卷調(diào)查的概率是多少(用分數(shù)作答);
(2)根據(jù)以上數(shù)據(jù),運用獨立性檢驗的基本思想,研究數(shù)學(xué)成績與及時復(fù)習(xí)的相關(guān)性.
參考公式:,其中為樣本容量
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,對于任意滿足,且,數(shù)列滿足,,其前項和為.
(1)求數(shù)列、的通項公式;
(2)令,數(shù)列的前項和為,求證:對于任意正整數(shù),都有;
(3)將數(shù)列、的項按照“當為奇數(shù)時,放在前面”,“當為偶數(shù)時,放在前面”的要求進行“交叉排列”得到一個新的數(shù)列:、、、、、、、、求這個新數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)的奇偶性,并說明理由;
(2)若,求在上的最大值;
(3)若,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)過點的直線,交橢圓于兩點,點在橢圓上,坐標原點恰為的重心,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半圓的直徑的兩端點為,點在半圓及直徑上運動,若將點的縱坐標伸長到原來的2倍(橫坐標不變)得到點,記點的軌跡為曲線.
(1)求曲線的方程;
(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的“直徑”,求曲線的“直徑”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com