【題目】已知函數(shù),曲線在點處的切線方程為

(1) 求的值;

(2) 證明: .

【答案】(1);(2)見解析

【解析】分析:第一問結合導數(shù)的幾何意義以及切點在切線上也在函數(shù)圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數(shù),利用導數(shù)研究函數(shù)的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.

詳解:(1)解:,由題意有,解得

(2)證明:(方法一)由(1)知,.設

則只需證明

,設

上單調遞增

,

,使得

且當時,,當時,

時,,單調遞減

時,,單調遞增

,由,得,

,

,

時,單調遞減,

,因此

(方法二)先證當時, ,即證

,,且

單調遞增,

單調遞增,則當時,

(也可直接分析 顯然成立)

再證

,則,令,得

且當時,,單調遞減;

時,,單調遞增.

,即

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù),函數(shù)

定義域為,求實數(shù)取值范圍;

⑵當時,求函數(shù)最小值;

是否存在非負實數(shù),使得函數(shù)定義域為,值域為若存在,求出值;若不存在,則說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:

(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,為橢圓上的動點,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將, 分別沿折起,使兩點重合于點,如圖2.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,過點的動直線交拋物線于不同兩點,線段中點為,射線與拋物線交于點.

(1)求點的軌跡方程;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有,兩個分廠生產某種產品,規(guī)定該產品的某項質量指標值不低于130的為優(yōu)質品.分別從,兩廠中各隨機抽取100件產品統(tǒng)計其質量指標值,得到如圖頻率分布直方圖:

(1)根據頻率分布直方圖,分別求出分廠的質量指標值的眾數(shù)和中位數(shù)的估計值;

(2)填寫列聯(lián)表,并根據列聯(lián)表判斷是否有的把握認為這兩個分廠的產品質量有差異?

優(yōu)質品

非優(yōu)質品

合計

合計

(3)(i)從分廠所抽取的100件產品中,利用分層抽樣的方法抽取10件產品,再從這10件產品中隨機抽取2件,已知抽到一件產品是優(yōu)質品的條件下,求抽取的兩件產品都是優(yōu)質品的概率;

(ii)將頻率視為概率,從分廠中隨機抽取10件該產品,記抽到優(yōu)質品的件數(shù)為,求的數(shù)學期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賽季甲、乙兩名籃球運動員各13場比賽得分情況用莖葉圖表示如圖:

根據上圖,對這兩名運動員地成績進行比較,下列四個結論中,不正確的是

A. 甲運動員得分的極差大于乙運動員得分的極差

B. 甲運動員得分的中位數(shù)大于乙運動員得分的中位數(shù)

C. 甲運動員的得分平均值大于乙運動員的得分平均值

D. 甲運動員的成績比乙運動員的成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

同步練習冊答案