【題目】孝感市某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中用分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調(diào)查.現(xiàn)在按課外閱讀時間的情況將學生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調(diào)查結(jié)果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,井判斷是否有90%的把握認為“參加閱讀與否”與性別有關(guān);

男生

女生

總計

不參加課外閱讀

參課外閱讀

總計

3)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類女生人數(shù),求X的數(shù)學期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

【答案】1;(2)列聯(lián)表見解析,沒有;(3.

【解析】

1)由抽樣比例求得男、女生人數(shù),計算的值;

2)填寫列聯(lián)表,計算的觀測值,對照臨界值得出結(jié)論;

3)由題意知的可能取值,計算對應(yīng)的概率值,寫出分布列,求出數(shù)學期望值.

(1)按分層抽樣原理男生應(yīng)抽取(人),

女生應(yīng)抽取(人),

則表中,

(2)根據(jù)表中的統(tǒng)計數(shù)據(jù),填寫列聯(lián)表如下;

男生

女生

總計

不參加課外閱讀

4

2

6

參加課外閱讀

8

6

14

總計

12

8

20

由表中數(shù)據(jù),計算,

所以沒有90%的把握認為“參加閱讀與否”與性別有關(guān);

(3)由題意知隨機變量的可能取值分別為0,1,2;

計算, ,

所以的數(shù)學期望為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為, ,離心率為,且過點

)求橢圓的標準方程.

、、是橢圓上的四個不同的點,兩條都不和軸垂直的直線分別過點 ,且這條直線互相垂直,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)試確定上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點

C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.

(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;

(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過)次.在抽樣結(jié)束時,已取到的黃色單車以表示,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構(gòu)組織語文、數(shù)學學科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機抽樣的方法從獲得數(shù)學和語文二等獎的學生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是異面直線,給出下列結(jié)論:

①一定存在平面,使直線平面,直線平面;

②一定存在平面,使直線平面,直線平面;

③一定存在無數(shù)個平面,使直線與平面交于一個定點,且直線平面

則所有正確結(jié)論的序號為(

A.①②B.C.②③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,過作垂直于軸的直線交該橢圓于兩點,直線的斜率為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若的外接圓在處的切線與橢圓交另一點于,且的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四面體ABCDABBCD,BCDC,BEAD垂足為E,FCD中點,ABBD2CD1

1)求證:ACBEF;

2)求點B到面ACD的距離.

查看答案和解析>>

同步練習冊答案