已知各項為正數(shù)的等差數(shù)列{an}滿足a3•a7=32,a2+a8=12,且bn=2-an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和Sn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)依題意,可得a2+a8=a3+a7=12,解方程組
a3•a7=32
a3+a7=12
,利用an>0,可求得d=1,從而可得數(shù)列{an}的通項公式;
(Ⅱ)由于cn=an+bn=(n+1)+(
1
2
)
n+1
,利用分組求和即可求得數(shù)列{cn}的前n項和Sn
解答: 解:(Ⅰ)∵{an} 是等差數(shù)列,∴a2+a8=a3+a7=12,
a3•a7=32
a3+a7=12
a3=4
a7=8
,或
a3=8
a7=4
,…(4分)
又an>0,∴
a3=4
a7=8

解得d=1,
∴an=a3+(n-3)d=4+(n-3)×1=n+1.…(6分)
(Ⅱ)∵bn=2-an=(
1
2
)
n+1
,
∴cn=an+bn=(n+1)+(
1
2
)
n+1
,
∴Sn=(a1+b1)+(a2+b2)+…+(an+bn
=(a1+a2+…+an)+(b1+b2+…+bn)          …(9分)
=[2+3+…+(n+1)]+[(
1
2
)
2
+(
1
2
)
3
+…+(
1
2
)
n+1
]
=
n(2+n+1)
2
+
(
1
2
)
2
(1-(
1
2
)
n
)
1-(
1
2
)

=
n(n+3)
2
+
2n-1
2n+1
.…(12分)
點評:本題考查等差數(shù)列的性質(zhì),著重考查分組求和法的應(yīng)用,考查方程思想與等價轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log5(x2+1),x∈[2,+∞)的反函數(shù)是( 。
A、g(x)=
5x-1
(x≥0)
B、g(x)=
5x-1
(x≥1)
C、g(x)=
5x+1
(x≥0)
D、g(x)=
5x+1
(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,
.
z
是復(fù)數(shù)z=
1
2
+
3
2
i的共軛復(fù)數(shù),則z2
.
z
=( 。
A、
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、-
1
2
+
3
2
i
D、-
1
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),對任意x,y∈R,x+y≠0,都有
f(x)+f(y)
x+y
>0,若x>2y,則(  )
A、f(x)>f(2y)
B、f(x)≥f(2y)
C、f(x)<f(2y)
D、f(x)≤f(2y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,ABCD是梯形,BC∥AD,E,F(xiàn)分別是AD,PC的中點,△ABE,△BEC,△ECD都是邊長為1的等邊三角形.
(1)求證:AP∥平面EFB;
(2)若△PAD是等邊三角形,求直線EF與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+3x,其中a≠0.
(Ⅰ)當(dāng)a=2時,求不等式f(x)≥3x+2的解集;
(Ⅱ)若不等式f(x)≤0的解集包含{x|x≤-1},求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}{bn}的每一項都是正數(shù),a1=4,b1=8且an,bn,an+1成等差數(shù)列,an,bn,an+1,bn+1成等比數(shù)列(n∈N*
(Ⅰ)求a2,b2;
(Ⅱ)求數(shù)列{an}{bn}的通項公式;
(Ⅲ)證明:對一切正整數(shù)n,都有
1
a1-1
+
1
a2-1
+…+
1
an-1
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(1,1).
(1)若橢圓的離心率為
2
2
,求橢圓的方程;
(2)若橢圓上兩動點P,Q,滿足OP⊥OQ.
①已知命題:“直線PQ恒與定圓C相切”是真命題,試直接寫出圓C的方程;(不需要解答過程)
②設(shè)①中的圓C交y軸的負半軸于M點,二次函數(shù)y=x2-m的圖象過點M.點A,B在該圖象上,當(dāng)A,O,B三點共線時,求△MAB的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當(dāng)點A的橫坐標為3時,△ADF為正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直線l1∥l,且l1和C有且只有一個公共點E,
(ⅰ)證明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案