如圖,在平行四邊形中,于,,將沿折起,使.
(1)求證:平面;
(2)求平面和平面夾角的余弦值.
(1)先證出,建系后利用空間向量證明.
(2)
解析試題分析:,
如圖建系,則 3分
, . 6分
(2)設(shè)平面PCD的法向量為,
則, 9分
.設(shè)平面PAC的法向量為
,
所以平面和平面夾角的余弦值為. 12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算,空間向量的應(yīng)用。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡化證明過程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐中,底面是邊長為2的正方形,,且,為中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.
(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說明 理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在組合體中,ABCD—A1B1C1D1是一個(gè)長方體,P—ABCD是一個(gè)四棱錐.AB=2,BC=3,點(diǎn)P平面CC1D1D,且PC=PD=.
(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當(dāng)a為何值時(shí),PC//平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分6分)
如圖,在邊長為的菱形中,,面,,、分別是和的中點(diǎn).
(1)求證: 面;
(2)求證:平面⊥平面;
(3)求與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點(diǎn)E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,面,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),連接,.
(1)求證:面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,四棱錐中,為正方形, 分別是線段的中點(diǎn). 求證:
(1)//平面 ;
(2)平面⊥平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com