分析 由不等式k<$\sqrt{k(k+1)}$<$\frac{k+(k+1)}{2}$=$\frac{2k+1}{2}$對(duì)所有正整數(shù)k成立,把它對(duì)k從1到n(n≥1)求和,即可證明結(jié)論.
解答 證:由不等式k<$\sqrt{k(k+1)}$<$\frac{k+(k+1)}{2}$=$\frac{2k+1}{2}$對(duì)所有正整數(shù)k成立,把它對(duì)k從1到n(n≥1)求和,
得到1+2+3+…+n<an<$\frac{3}{2}$+$\frac{5}{2}$+…+$\frac{2n+1}{2}$,
∴$\frac{n(n+1)}{2}$<an<$\frac{(n+1)^{2}}{2}$.
點(diǎn)評(píng) 本題考查不等式的證明,考查放縮法,考查學(xué)生分析解決問題的能力,屬于中檔題.正確放縮是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {b,d,e,f} | B. | {d,e,f} | C. | {b,c,d,f} | D. | {b,d,f} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<2} | B. | {x|x>2} | C. | {x|-2<x<0,或0<x<2} | D. | {x|x>2,或x<-2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com