【題目】若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2+1,值域為{5,19}的“孿生函數(shù)”共有( )
A.4個
B.6個
C.8個
D.9個

【答案】D
【解析】解:令2x2+1=5得x=± ,令2x2+1=19得x=±3,使得函數(shù)值為5的有三種情況,

即x=﹣ , ,± ,使得函數(shù)值為19的也有三種情況,即x=3,﹣3,±3,

則“孿生函數(shù)”共有3×3=9個.

故選D.

【考點精析】關于本題考查的函數(shù)的表示方法和函數(shù)的定義域及其求法,需要了解兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法;把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法;用圖像表示函數(shù)關系的方法叫做圖像法;求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)f(x)在R上單調(diào)遞增,當x∈[0,3]時,值域為[1,4].
(1)求函數(shù)f(x)的解析式;
(2)當x∈[﹣1,8]時,求函數(shù) 的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +bx(其中a,b為常數(shù))的圖象經(jīng)過(1,3)、(2,3)兩點.
(I)求a,b的值,判斷并證明函數(shù)f(x)的奇偶性;
(II)證明:函數(shù)f(x)在區(qū)間[ ,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,離心率
(1)求橢圓C的方程;
(2)若斜率為k的直線過點M(2,0),且與橢圓C相交于A,B兩點.試求k為何值時,三角形OAB是以O為直角頂點的直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2分別是C: + =1(a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的離心率為 ,虛軸長為4.
(1)求雙曲線的標準方程;
(2)過點(0,1),傾斜角為45°的直線l與雙曲線C相交于A、B兩點,O為坐標原點,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為R,集合A={x|y=lgx+ },B={x| <2xa≤8}.
(1)當a=0時,求(RA)∩B;
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案