【題目】如圖所示,橢圓E的中心為坐標原點,焦點軸上,且在拋物線的準線上,點是橢圓E上的一個動點, 面積的最大值為.

(Ⅰ)求橢圓E的方程;

(Ⅱ)過焦點作兩條平行直線分別交橢圓E于四個點.

①試判斷四邊形能否是菱形,并說明理由;

②求四邊形面積的最大值.

【答案】(Ⅰ);(Ⅱ)(i) 不能為菱形;(ii)當時, 取最大值6.

【解析】試題分析(Ⅰ)待定系數(shù)法,利用焦點在已知拋物線的準線上,可得值,再由點在短軸頂點時面積的最大,可得,由關(guān)系得,可求得標準方程;(Ⅱ)易判斷函數(shù)不可能平行于軸,為計算方便可令方程為,與橢圓方程聯(lián)立消去,利用根與系數(shù)的關(guān)系,得兩點縱坐標間的關(guān)系,①四邊形為菱形,對角線互相垂直,則,轉(zhuǎn)化為關(guān)于的方程,無線,可證四邊形不是菱形.②同樣利用坐標和面積公式,用表示出四邊形的面積.再利用函數(shù)的性質(zhì)可得面積的最大值.

試題解析:

(Ⅰ)設橢圓方程為

焦點在拋物線的準線上,

當點在短軸頂點時面積最大,此時

橢圓方程為

(Ⅱ)(i)由(I)知(-1,0)

直線不能平行于軸,所以設直線的方程為

連結(jié),若為菱形,則,即

顯然方程無解,

所以不能為菱形.

(ii)易知四邊形為平行四邊形,則,

又因為,

,則

上是增函數(shù),

所以,當時, 取最大值6,此時

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量,函數(shù).

(1)求的單調(diào)減區(qū)間;

(2)將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到的圖象,求函數(shù)的解析式及其圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=f(x)(x∈R)的圖象過點(0,﹣3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù) 的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別為雙曲線的左、右頂點,雙曲線的實軸長為,焦點到漸近線的距離為

(1)求雙曲線的方程;

(2)已知直線與雙曲線的右支交于兩點,且在雙曲線的右支上存在點,使,求的值及點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動點.

證明: ;

若平面分該棱柱為體積相等的兩個部分,試確定點的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列, 都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列.

(1)設數(shù)列分別為等差、等比數(shù)列,若, , ,求

(2)設的首項為1,各項為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項和;

(3)設是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對任意的,在之間數(shù)列的項數(shù)總是?若存在,請給出一個滿足題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形, 的中點, 交于點平面.

(I)求證: ;

(II)若,求點到平面距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學經(jīng)典.其中對勾股定理的論術(shù)比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )

(注:1丈=10尺=100寸,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

同步練習冊答案