如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.

(1)求證:△ABE≌△ACD; 
(2)若AB=6 cm,BC=4 cm,求AE的長(zhǎng).
(1)見解析;(2).

試題分析:(1)欲證三角形全等,需牢牢掌握這種證明方法和所需要的條件.本小題,(已知),下尋找另外的邊和角,考慮到這里有圓,所以運(yùn)用同弧所對(duì)應(yīng)的圓周角相等可得(弧所對(duì)),接著證明(其他角和邊不好證,同時(shí)這里有弦切角可以利用).(2)欲求,因,則可轉(zhuǎn)化為求,考慮到,需將聯(lián)系起來就得考慮三角形相似.注意到,.
試題解析:(1)證明 因?yàn)閄Y是⊙O的切線,所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060434119592.png" style="vertical-align:middle;" />,所以,∴.                       2分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060434181461.png" style="vertical-align:middle;" />,所以.                                  4分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060433854751.png" style="vertical-align:middle;" />,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060433823534.png" style="vertical-align:middle;" />,
所以.                                           5分
(2)解 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060434150454.png" style="vertical-align:middle;" />,,
所以,                                          7分      
所以, 即                             8分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060433963737.png" style="vertical-align:middle;" />,,
所以.所以.          10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE與圓相切,求線段CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形的內(nèi)接四邊形,的延長(zhǎng)線與的延長(zhǎng)線交于點(diǎn),且.

(I)證明:;
(II)設(shè)不是的直徑,的中點(diǎn)為,且,證明:為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l過拋物線y2=2px(p>0)的焦點(diǎn),且交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知|AF|=4,
CB
=3
BF
,則p=( 。
A.2B.
4
3
C.
8
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(0,1)、B(0,-1),P是一個(gè)動(dòng)點(diǎn),且直線PA、PB的斜率之積為-
1
2

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)Q(2,0),過點(diǎn)(-1,0)的直線l交C于M、N兩點(diǎn),若對(duì)滿足條件的任意直線l,不等式
QM
QN
≤λ
恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點(diǎn)E(-
2
,0),F(xiàn)(
2
,0)
,動(dòng)點(diǎn)P滿足
PE
PF
=0
,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M滿足
PM
=(
2
-1)
MQ
,點(diǎn)M的軌跡為C.
(I)求曲線C的方程;
(II)若線段AB是曲線C的一條動(dòng)弦,且|AB|=2,求坐標(biāo)原點(diǎn)O到動(dòng)弦AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓Γ的中心在坐標(biāo)原點(diǎn)O,過右焦點(diǎn)F(1,0)且垂直于橢圓對(duì)稱軸的弦MN的長(zhǎng)為3.
(1)求橢圓Γ的方程;
(2)直線l經(jīng)過點(diǎn)O交橢圓Γ于P、Q兩點(diǎn),NP=NQ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,矩形ABCD中,E是BC上的點(diǎn),AE⊥DE,BE=4,EC=1,則AB的長(zhǎng)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PAB、PCD是圓的兩條割線,已知PA=6,AB=2,PC=CD.則PD=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案