1.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個上界,已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,g(x)=log${\;}_{\frac{1}{2}}$$\frac{1+x}{x-1}$.
(1)求函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的所有上界構(gòu)成的集合;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

分析 (1)根據(jù)函數(shù)單調(diào)性的性質(zhì)求出函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的取值范圍,結(jié)合上界的定義進(jìn)行求解即可.
(2)由|f(x)|≤3在[1,+∞)上恒成立,設(shè)$t={({\frac{1}{2}})^x}$,t∈(0,1],由-3≤f(x)≤3,得-3≤1+at+t2≤3,$-({t+\frac{4}{t}})≤a≤\frac{2}{t}-t$在(0,1]上恒成立.由此入手,能夠求出實數(shù)a的取值范圍.

解答 解:(1)t=$\frac{1+x}{x-1}$=$\frac{x-1+2}{x-1}$=1+$\frac{2}{x-1}$,在$\frac{5}{3}$≤x≤3上為減函數(shù),
∴2≤t≤4,
則log${\;}_{\frac{1}{2}}$4≤g(x)≤log${\;}_{\frac{1}{2}}$2,
即-2≤g(x)≤-1,
則|g(x)|≤2,
即M≥2,
即函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的所有上界構(gòu)成的集合為[2,+∞).
(2)由題意知,|f(x)|≤3在[0,+∞)上恒成立
設(shè)$t={({\frac{1}{2}})^x}$,t∈(0,1],由-3≤f(x)≤3,得-3≤1+at+t2≤3
∴$-({t+\frac{4}{t}})≤a≤\frac{2}{t}-t$在(0,1]上恒成立…(6分)
設(shè)$h(t)=-t-\frac{4}{t}$,$p(t)=\frac{2}{t}-t$,h(t)在(0,1]上遞增;p(t)在(0,1]上遞減,h(t)在(0,1]上的最大值為h(1)=-5;p(t)在(0,1]上的最小值為p(1)=1,…(9分)
所以實數(shù)a的取值范圍為[-5,1].…(10分)

點評 本題考查函數(shù)的應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,正確理解新定義,合理地進(jìn)行等價轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若cosα=-$\frac{{\sqrt{3}}}{3}$,sin2α>0,則tanα的值為( 。
A.-$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知△ABC是等腰三角形,則向量$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$所在的直線與BC垂直(填:平行,垂直)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.各項均為正數(shù)的數(shù)列{an}滿足:na2n+1=(n+1)a2n+anan+1,且a3=$\frac{3π}{4}$,若Sn為數(shù)列{an}的前n項和,則tanS2015等于( 。
A.-$\sqrt{3}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的導(dǎo)數(shù).
(1)y=(2x+3)2
(2)y=e-0.05x+1;
(3)y=sin(πx+φ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=ax(a>0且a≠1),若f(-3)>f(-π)則a的取值范圍是(  )
A.a>0B.a>1C.a<0D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若關(guān)于x的方程f(x)+log2k=0(k為實數(shù))在x∈[$\frac{π}{3}$,$\frac{19π}{24}$]上恒有實數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=ax7+bx5+cx3+dx+4,其中a、b、c、d是常數(shù),如果f(-5)=5,則f(5)等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的最大值,并畫出圖象:
(1)f(x)=-x2+6x-1;
(2)f(x)=2x2-4x,x∈[0,2].

查看答案和解析>>

同步練習(xí)冊答案