已知,,且.
(1)求的值;
(2)求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/c/p4vi6.png" style="vertical-align:middle;" />,最大值為6.
(1)求常數(shù)m的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的最大值為3,最小值為.
(1)求的值;
(2)當(dāng)求時(shí),函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[,]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),鈍角(角對(duì)邊為)的角滿足.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)在給定的平面直角坐標(biāo)系中,畫函數(shù),的簡(jiǎn)圖;
(2)求的單調(diào)增區(qū)間;
(3) 函數(shù)的圖象只經(jīng)過(guò)怎樣的平移變換就可得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,某市政府決定在以政府大樓為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書(shū)館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書(shū)館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書(shū)館的正面要朝市政府大樓.設(shè)扇形的半徑 ,,與之間的夾角為.
(1)將圖書(shū)館底面矩形的面積表示成的函數(shù).
(2)求當(dāng)為何值時(shí),矩形的面積有最大值?其最大值是多少?(用含R的式子表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(θ)=sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com