【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測活動(dòng)推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

西安公交六公司車隊(duì)為緩解周邊居民出行壓力,以萬元的單價(jià)購進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知,每輛車每個(gè)月的運(yùn)營成本約為萬元.已知該線路公交車票價(jià)為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要)年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中,

參考公式:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

【答案】(1)(2),3470(3)7

【解析】

1)由散點(diǎn)圖可知,更接近指數(shù)增長,所以適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型.

2)根據(jù)(1)的判斷結(jié)果兩邊取對(duì)數(shù)得,則兩者線性相關(guān),根據(jù)已知條件求出得回歸方程,進(jìn)而得到y關(guān)于x的回歸方程,再令,求預(yù)測值

3)設(shè)一名乘客一次乘車的費(fèi)用為元,根據(jù)題意得可能取值為:1.41.6、1.82,求出分布列,進(jìn)而求得期望,然后再建立不等式求解.

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), 均為大于零的常數(shù)),適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型.

2)根據(jù)(1)的判斷結(jié)果,

兩邊取對(duì)數(shù)得

其中,,,

,

所以

所以。

當(dāng)時(shí), 。

所以活動(dòng)推出第8天使用掃碼支付的人次3470.

3)設(shè)一名乘客一次乘車的費(fèi)用為元,

根據(jù)題意得可能取值為:1.4、1.6、1.82

,

,

。

假設(shè)這批車需要)年才能開始盈利,

解得。

所以需要7年才能開始盈利.。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,的中點(diǎn),點(diǎn),分別在線段,上運(yùn)動(dòng)(其中不與,重合,不與,重合),且,沿折起,得到三棱錐,則三棱錐體積的最大值為__________;當(dāng)三棱錐體積最大時(shí),其外接球的表面積的值為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列)的各項(xiàng)均為正整數(shù),且.若對(duì)任意,存在正整數(shù)使得,則稱數(shù)列具有性質(zhì).

1)判斷數(shù)列與數(shù)列是否具有性質(zhì);(只需寫出結(jié)論)

2)若數(shù)列具有性質(zhì),且,,,求的最小值;

3)若集合,且(任意.求證:存在,使得從中可以選取若干元素(可重復(fù)選。┙M成一個(gè)具有性質(zhì)的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).是自然對(duì)數(shù)的底數(shù))

1)求的單調(diào)遞減區(qū)間;

2)若函數(shù),證明上只有兩個(gè)零點(diǎn).(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),函數(shù)

1)當(dāng)函數(shù)時(shí)為減函數(shù),求a的范圍;

2)若a=e(e為自然對(duì)數(shù)的底數(shù));

求函數(shù)g(x)的單調(diào)區(qū)間;

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)Fx=min{2|x1|,x22ax+4a2}

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

同步練習(xí)冊(cè)答案