A. | -2 | B. | -1 | C. | 0 | D. | 1 |
分析 由約束條件作出可行域,利用數(shù)量積的坐標(biāo)表示得到線性目標(biāo)函數(shù),化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)求得$\overrightarrow{OP}$•$\overrightarrow{OA}$的最大值與最小值,則答案可求.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{x≤1}\end{array}\right.$作出可行域如圖,
設(shè)P(x,y),又A(-2,1),
∴z=$\overrightarrow{OP}$•$\overrightarrow{OA}$=-2x+y,化為直線方程的斜截式:y=2x+z.
由圖可知,當(dāng)直線y=2x+z過(guò)點(diǎn)A(1,0)時(shí),直線在y軸上的截距最小,z有最小值為-2×1+0=-2;
當(dāng)直線y=2x+z過(guò)點(diǎn)C(0,1)時(shí),直線在y軸上的截距最大,z有最大值為-2×0+1=1.
∴$\overrightarrow{OP}$•$\overrightarrow{OA}$的最大值與最小值的和為-2+1=-1.
故選:B.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,利用數(shù)量積得到目標(biāo)函數(shù)是解題的關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k>0 | B. | k≥0 | C. | k<0 | D. | k≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin($\frac{1}{3}$x+$\frac{π}{6}$) | B. | y=sin(3x+$\frac{π}{6}$) | C. | y=sin($\frac{1}{3}$x-$\frac{π}{6}$) | D. | y=sin(3x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$∞,\frac{3}{4}$)∪($\frac{5}{4},+∞$) | B. | (-$∞,\frac{3}{4}$]∪[$\frac{5}{4},+∞$) | C. | [$\frac{3}{4},\frac{5}{4}$] | D. | ($\frac{3}{4},\frac{5}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com