分析:( I)先求出函數(shù)的導數(shù),通過討論a的范圍從而得到函數(shù)的單調(diào)性;
( II)將a=2代入,求出f(x)的表達式,由( I)知函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.(1)利用數(shù)學歸納法證明即可,(2)問題轉(zhuǎn)化為求函數(shù)g(x)=
x
2-3x+lnx的單調(diào)性問題.
解答:
解( I)可知f(x)的定義域為(0,+∞),且f′(x)=x-a+
=
.
當a-1=1即a=2,則f′(x)=
≥0,得f(x)在(0,+∞)單調(diào)增加.
當a-1<1,而a>1,即1<a<2時,若x∈(a-1,1),則f′(x)<0;
若x∈(0,a-1)或x∈(1,+∞),則f′(x)>0.
此時f(x)在(a-1,1)單調(diào)減少,在(0,a-1),(1,+∞)單調(diào)增加;
當a-1>1,即a>2,可得f(x)在(1,a-1)單調(diào)減少,在(0,1),(a-1,+∞)單調(diào)增加.
綜上,當1<a<2時,函數(shù)f(x)在區(qū)間(a-1,1)上單調(diào)遞減,在區(qū)間(0,a-1)和(1,+∞)上單調(diào)遞增;
當a=2時,函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
當a>2時,函數(shù)f(x)在區(qū)間(1,a-1)上單調(diào)遞減,在區(qū)間(0,1)和(a-1,+∞)上單調(diào)遞增.
( II)若a=2,則f(x)=
x
2-2x+lnx,由( I)知函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.
(1)因為a
1=10,所以a
2=f(a
1)=f(10)=30+ln10,可知a
2>a
1.
假設0<a
k<a
k+1,因為函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,所以f(a
k+1)>f(a
k),即得a
k+2>a
k+1>0.
所以,由數(shù)學歸納法可得a
n<a
n+1.因此數(shù)列{a
n}為遞增數(shù)列.
(2)由(1)知:當且僅當0<a
1<a
2,數(shù)列{a
n}為遞增數(shù)列.
所以,題設即
a12-2 a
1+lna
1>a
1,且a
1為正整數(shù).得
a12-3a
1+lna
1>0.
令g(x)=
x
2-3x+lnx(x≥1),則g′(x)=x-3+
,可知函數(shù)g(x)在區(qū)間[3,+∞)遞增.
由于g(1)=
-3<0,g(2)=2-6+ln2=ln2-4<0,g(5)=-
+ln5<0,g(6)=ln6>0.所以,首項a
1的最小值為6.