光明中學(xué)體育調(diào)研小組隨機(jī)詢問本校高二年級(jí)100名性別不同的學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),其中男生、女生各50人,在被詢問的100人中,男生愛好的有30人,不愛好的有20人,女生愛好的有20人,不愛好的有30人.
(1)請(qǐng)根據(jù)已知數(shù)據(jù)填寫列聯(lián)表;
(2)在犯錯(cuò)誤的概率不超過5%的前提下,能否認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”?
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

臨界值表:
p(k2≥k00.100.050.0250.010
k02.7063.8415.0246.635
總計(jì)
愛好
不愛好
總計(jì)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)在抽出100名學(xué)生,已知男生愛好的有30人,不愛好的有20人,女生愛好的有20人,不愛好的有30人,填好表格.
(2)根據(jù)條件中所給的觀測值,同題目中得到觀測值對(duì)應(yīng)的結(jié)果,得到在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
解答: 解:(1)由已知數(shù)據(jù)可得列聯(lián)表如下:
總計(jì)
愛好302050
不愛好203050
總計(jì)5050100
-------(5分)
(2)由k2=
100(30×30-20×20)2
50×50×50×50
=4>3.481,
∴由獨(dú)立性檢驗(yàn)的意義知,在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.-------(12分)
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查對(duì)于觀測值表的認(rèn)識(shí),這種題目一般運(yùn)算量比較大,主要要考查運(yùn)算能力,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2≤x<4},B={x|3x-8≥7-2x},則A∩(∁RB)=( 。
A、[2,3)
B、[2,3]
C、[3,4)
D、[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求數(shù)列前n項(xiàng)和Sn的最大值及相應(yīng)的n;
(2)求|a1|+|a3|+|a5|+…+|a19|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,x,y},B{1,2x,x2},是否存在實(shí)數(shù)x和y,使得A=B.若存在,求出x與y的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且
AB
=
BP

(Ⅰ)若O,P,C三點(diǎn)共線,求以線段OA,OB為鄰邊的平行四邊形的對(duì)角線長;
(Ⅱ)記函數(shù)f(α)=
BP
CA
,α∈(-
π
8
,
π
2
),試求函數(shù)f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程:x2+y2-2x+4y+k=0
(1)若方程表示圓,求k的取值范圍;
(2)當(dāng)k=-4時(shí),是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點(diǎn).若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S9=99.
(1)求an及Sn;
(2)若數(shù)列{bn}滿足bn=
4
an2-1
,n∈N*,證明數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-2sin2
x
2

(Ⅰ)在區(qū)間[
π
2
,
π
2
]上任取x0,求滿足f(x0)≥
1
2
的概率;
(Ⅱ)若f(α)=
2
2
3
,α為第四象限角,求
sin(π-2α)+cos(π+α)
tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡集合A={x|y=
x+1
-
1
2-x
}.

查看答案和解析>>

同步練習(xí)冊(cè)答案