已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
(Ⅰ)因為函數(shù)已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
當(dāng)x<-2時,f(x)∈(1,+∞);當(dāng)-2≤x≤
1
2
時,f(x)∈[1,
7
2
]
;當(dāng)x>
1
2
時,f(x)∈(
7
2
,+∞)

所以函數(shù)的值域為[1,+∞),最小值為1.
(Ⅱ)由(Ⅰ)得m2+2m-2≤1,
即m2+2m-3≤0,解得-3≤m≤1,
所以命題p:-3≤m≤1.
對于命題q,函數(shù)y=(m2-1)x是增函數(shù),則m2-1>1,即m2>2,
所以命題q:m<-
2
m>
2

由“p或q”為真,“p且q”為假可知有以下兩個情形:
若p真q假,則
-3≤m≤1
-
2
≤m≤
2
解得:-
2
≤m≤1
,
若p假q真,則
m<-3或m>1
m<-
2
或m>
2
解得:m<-3,或m>
2

故實數(shù)m的取值范圍是(-∞,-3)∪[-
2
,1]∪(
2
,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案