若函數(shù)f(x)滿足下列條件:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)具有性質(zhì)M;反之,若x0不存在,則稱函數(shù)f(x)不具有性質(zhì)M.
(1)證明:函數(shù)f(x)=3x具有性質(zhì)M,并求出對(duì)應(yīng)的x0的值;
(2)已知函數(shù)h(x)=lg
a
x2+1
具有性質(zhì)M,求a的取值范圍.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:計(jì)算題,新定義,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由新定義,將f(x)=3x代入f(x0+1)=f(x0)+f(1),化簡(jiǎn)計(jì)算即可得證;
(2)h(x)的定義域?yàn)镽,且可得a>0.因?yàn)閔(x)具有性質(zhì)M,所以存在x0,使h(x0+1)=h(x0)+h(1),代入化簡(jiǎn)整理得到二次方程,討論a=2,a≠2,且判別式大于等于0,解出它們求并集即可得到所求的范圍.
解答: (1)證明:f(x)=3x代入f(x0+1)=f(x0)+f(1)得:3x0+1=3x0+3
即:3x0=
3
2
,解得x0=log3
3
2
. 
所以函數(shù)f(x)=3x具有性質(zhì)M.
(2)解:h(x)的定義域?yàn)镽,且可得a>0.
因?yàn)閔(x)具有性質(zhì)M,所以存在x0,使h(x0+1)=h(x0)+h(1),
代入得:lg
a
(x0+1)2+1
=lg
a
x02+1
+lg
a
2
.化為2(x02+1)=a(x0+1)2+a
整理得:(a-2)x02+2ax0+2a-2=0有實(shí)根.
①若a=2,得x0=-
1
2

②若a≠2,得△≥0,即a2-6a+4≤0,解得:a∈[3-
5
,3+
5
]

所以:a∈[3-
5
,2)∪(2,3+
5
]

綜上可得a∈[3-
5
,3+
5
]
點(diǎn)評(píng):本題考查新定義的理解和運(yùn)用,考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)及運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-
3
2
x)emx
(Ⅰ)若函數(shù)f(x)在區(qū)間(1,+∞)上只有一個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.
(Ⅱ)若函數(shù)f(x)中m=1時(shí),函數(shù)g(x)=kx+1(k≠0),且?x1∈[-
3
2
,2],?x2∈[2,3]使得f(x)≥g(x)成立.求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=-x3+6x2-9x+m在區(qū)間[0,4]上的最小值為2,求它在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lnx-
1
2
ax2-2x存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,1)
B、(-∞,1]
C、(-1,+∞)
D、[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩個(gè)向量
e1
e2
,滿足|
e1
|=1,|
e2
|=1,
e1
,
e2
滿足向量
a
=k
e1
+
e2
,
b
=
e1
-k
e2
,若
e1
e2
的數(shù)量積用含有k的代數(shù)式f(k)表示.若|
a
|=
3
|
b
|.
(1)求f(k);
(2)若
e1
e2
的夾角為60°,求k值;
(3)若
a
b
的垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=axlnx(a≠0)
(1)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線x-y+1=0垂直,求a及函數(shù)f(x)的最值;
(2)若m>0,n>0,a>0,證明:f(m)+f(n)≥f(m+n)-a(m+n)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,CD是△ABC中AB邊上的高,以AD為直徑的圓交AC于點(diǎn)E,一BD為直徑的圓交BC于點(diǎn)F.
(Ⅰ)求證:E、D、F、C四點(diǎn)共圓;
(Ⅱ)若BD=5,CF=
16
3
,求四邊形EDFC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求拋物線y=x2過(guò)點(diǎn)P(1,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=sinx(0≤x≤
3
2
π)的圖象與y軸及y=-1所圍成的一個(gè)封閉圖形的面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案