下列說(shuō)法:
(1)回歸直線 
y
=-2x+5,則x每增加1個(gè)單位,y減少2個(gè)單位;
(2)已知-1<x+y<4且2<x-y<3,則2x-3y的取值范圍是(3,8);
(3)函數(shù)f(x)=loga(x-1)+1的圖象過(guò)的定點(diǎn)A在直線mx-y+n=0上,則4m+2n的最小值是2
2
;
(4)不等式
2x-2
x2+3x+5
≤a在x>1時(shí)恒成立,則a≥
5
12

其中正確的說(shuō)法序號(hào)是
 
考點(diǎn):線性回歸方程,基本不等式
專題:綜合題,不等式的解法及應(yīng)用
分析:(1)根據(jù)回歸直線方程的x的系數(shù)是-2,得到變量x增加一個(gè)單位時(shí),函數(shù)值要平均減少2個(gè)單位;
(2)根據(jù)已知的約束條件
-1<x+y<4
2<x-y<3
畫(huà)出滿足約束條件的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最大值和最小值,再根據(jù)最值給出目標(biāo)函數(shù)的取值范圍;
(3)由題意,函數(shù)f(x)=loga(x-1)+1的圖象恒過(guò)定點(diǎn)A,由對(duì)數(shù)的性質(zhì)可得出點(diǎn)A(2,1),再由點(diǎn)A在直線mx-y+n=0上,得到2m+n=1,利用基本不等式求出4m+2n的最小值;
(4)求出y=
2x-2
x2+3x+5
(x>1)的最大值,即可得出結(jié)論.
解答: 解:(1)回歸直線
y
=-2x+5,則x每增加1個(gè)單位,函數(shù)值要平均減少2個(gè)單位,故(1)不正確;
(2)畫(huà)出不等式組
-1<x+y<4
2<x-y<3
表示的可行域如圖示:
在可行域內(nèi)平移直線z=2x-3y,當(dāng)直線經(jīng)過(guò)x-y=2與x+y=4的交點(diǎn)A(3,1)時(shí),目標(biāo)函數(shù)有最小值z(mì)=2×3-3×1=3;
當(dāng)直線經(jīng)過(guò)x+y=-1與x-y=3的焦點(diǎn)A(1,-2)時(shí),目標(biāo)函數(shù)有最大值z(mì)=2×1+3×2=8,
∴z=2x-3y的取值范圍是(3,8),故(2)正確;
(3)∵A(2,1),∴2m+n=1,∴4m+2n≥2
22m+n
=2
2
,當(dāng)且僅當(dāng)4m=2n即或2m=n時(shí)取等號(hào),∴4m+2n的最小值是2
2
,故(3)正確;
(4)令y=
2x-2
x2+3x+5
,則令x-1=t(t>0),∴y=
2t
t2+5t+9
=
2
t+
9
t
+5
2
11
,當(dāng)且僅當(dāng)t=3,即x=4時(shí),取等號(hào),a≥
2
11
,故(4)不正確.
故答案為:(2)(3).
點(diǎn)評(píng):本題考查基本不等式在最值問(wèn)題中的應(yīng)用,考查線性規(guī)劃知識(shí),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車間生產(chǎn)一種玩具,為了要確定加工玩具所需要的時(shí)間,進(jìn)行了10次實(shí)驗(yàn),數(shù)據(jù)如下:
玩具個(gè)數(shù)(x) 2 4 6 8 10 12 14 16 18 20
加工時(shí)間(y) 4 7 12 15 21 25 27 31 37 41
如回歸方程
y
=
b
x+
a
的斜率是
b
,則它的截距是( 。
A、
a
=11
b
-22
B、
a
=11-22
b
C、
a
=22-11
b
D、
a
=22
b
-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(θ)=
a
b
,向量
a
=(sinθ,cosθ),
b
=(sinθ,
3
sinθ+2cosθ),其中角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(
1
2
,
3
2
),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω
x+y≥1
x≤1
y≤1
上的一個(gè)動(dòng)點(diǎn),試確定θ的取值范圍,并求f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,連結(jié)AC1交平面A1BD于點(diǎn)H,給出以下結(jié)論:
①AC1⊥平面A1BD;  
AH=
3
3
;
③直線AC1與BB1所成的角為60°.
則正確的結(jié)論是
 
.(正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列四個(gè)命題,其中,不正確的命題的序號(hào)是
 

①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行
②若直線l1、l2是異面直線,則與l1、l2都相交的兩條直線也是異面直線
③若平面外兩點(diǎn)到平面的距離相等,則過(guò)這兩點(diǎn)的直線必平行于該平面
④棱錐截去一個(gè)小棱錐后剩余部分是棱臺(tái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,以下四個(gè)命題:
①若α⊥β,m⊥α,則m∥β;   
②若α⊥γ,β⊥γ,則α∥β;
③若m⊥α,n∥m,則n⊥α;    
④若m∥α,n∥α,則m∥n.
其中正確命題的序號(hào)是
 
.(將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩變量x和y成線性相關(guān)關(guān)系,對(duì)應(yīng)數(shù)據(jù)如表,若線性回歸方程為:
y
=1.9x+
a
.則
a
=
 
x 2 2.5 3 3.5 4
y 4 4.8 6.2 6.9 8.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x+y-5≤0
x-2y+1≤0
x-1≥0
,則z=x+2y-1的最大值( 。
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足不等式組
x+2y-2≥0
x-y-1≤0
x-2y+2≥0
,則x+y的最大值為( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案