設函數(shù)f(x)=x(ex-ae-x)(x∈R)是偶函數(shù),則實數(shù)a=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:設g(x)=ex-ae-x,根據(jù)函數(shù)的奇偶性的性質(zhì)即可得到結(jié)論.
解答: 解:設g(x)=ex-ae-x,
則f(x)=xg(x),
若函數(shù)f(x)=x(ex-ae-x)(x∈R)是偶函數(shù),則g(x)=ex-ae-x(x∈R)是奇函數(shù),
則g(0)=0,
即1-a=0,解得a=1,
故答案為:1.
點評:本題主要考查函數(shù)奇偶性的應用,根據(jù)函數(shù)奇偶性的關系,構(gòu)造函數(shù)g(x).利用奇函數(shù)g(0)=0是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,AD是△ABC外角∠EAC的平分線,AD與△ABC的外接圓交于點D,N為BC延長線上一點,ND交△ABC的外接圓于點M.求證:
(1)DB=DC;
(2)DC2=DM•DN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=1,且點An(an,an+1)在函數(shù)y=
x
x+1
的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)求證:弦AnAn+1的斜率隨n的增大而增大;
(3)若數(shù)列{bn}滿足an•bn=2n,求數(shù)列{bn}的前n項和Sn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)fn(x)=xn(1-x)2在[
1
2
,1]上的最大值為an(n=1,2,3,…).
(Ⅰ)求函數(shù)fn(x)的導函數(shù)fn′(x),以及a1,a2;
(Ⅱ)求數(shù)列{an}的通項公式,并求證對任何正整數(shù)n(n≥2),都有an
1
(n+2)2
成立;
(Ⅲ)設數(shù)列{an}的前n項和為Sn,求證:對任意正整數(shù)n,都有Sn
7
16
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設y=f(x)為R上的奇函數(shù),y=g(x)為R上的偶函數(shù),且g(x)=f(x+1),則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是⊙M:(x+1)2+y2=16上的任意一點,點N(1,0),線段PN的垂直平分線l和半徑MP相交于點Q
(1)當點P在圓上運動時,求點Q的軌跡方程;
(2)已知直線l′與點Q的軌跡交于點A,B,且直線l′的方程為y=kx+
3
(k>0),若O為坐標原點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx-1,a∈R
(1)若曲線y=f(x)在點P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x+
1
2
)在x∈[0,e]上有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a3=11,前9項和S9=153.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項,按原來的順序排成一個新的數(shù)列,試求新數(shù)列的前n項和An

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

積分
a
-a
a2-x2
dx=
 

查看答案和解析>>

同步練習冊答案