【題目】已知函數(shù).
(1)若,恒成立,求的取值范圍;
(2)若,是否存在實(shí)數(shù),使得,都成立?請(qǐng)說明理由.
【答案】(1);(2)不存在,理由見解析.
【解析】
(1)根據(jù)的奇偶性和單調(diào)性,將函數(shù)值的比較變?yōu)樽宰兞康谋容^,得到恒成立,利用參變分離,得到的取值范圍;(2)假設(shè)存在,整理和,設(shè),,
得到,按照和進(jìn)行分類討論,從而證明不存在所需的.
(1),為上的奇函數(shù),單調(diào)遞減,
所以恒成立,
可得
所以恒成立
即恒成立,
當(dāng)時(shí),該不等式恒成立,
當(dāng)時(shí),,
設(shè),則
,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,
所以.
(2)
所以,
假設(shè)存在實(shí)數(shù),使得和都成立,
設(shè),,
則,
,
若,則,解得,或,,均不是有理數(shù),
若,則,其中,而,所以不成立,
綜上所述,故不存在實(shí)數(shù),使得,都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和,且.
(1)求的通項(xiàng)公式;
(2)若不等式對(duì)所有的正整數(shù)都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個(gè)解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.
(1)若m=0,寫出A∪B的子集;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說明理由;
(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長(zhǎng)度;
(Ⅱ)求道路AB,AE長(zhǎng)度之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí),某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)中的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的邊AB所在直線方程為y=3x,BC所在直線方程為y=ax+12,AC邊上的高BD所在直線方程為y=﹣x+8.
(1)求實(shí)數(shù)a的值;
(2)若AC邊上的高BD,求邊AC所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)高二甲、乙兩個(gè)同類班級(jí)進(jìn)行“加強(qiáng)‘語文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率有幫助”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語文閱讀理解訓(xùn)練),乙班為對(duì)比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗(yàn)前的測(cè)試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用題測(cè)試的平均成績(jī)(均取整數(shù))如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人數(shù)) | 3 | 6 | 12 | 15 | 9 |
乙班(人數(shù)) | 4 | 7 | 16 | 12 | 6 |
現(xiàn)規(guī)定平均成績(jī)?cè)?0分以上(不含80分)的為優(yōu)秀.
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為“加強(qiáng)‘語文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助;
(2)對(duì)甲乙兩班60分及以下的同學(xué)進(jìn)行定期輔導(dǎo),一個(gè)月后從中抽取3人課堂檢測(cè),表示抽取到的甲班學(xué)生人數(shù),求及至少抽到甲班1名同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com