【題目】設(shè)等差數(shù)列的前項和,.

(1)求的通項公式;

(2)若不等式對所有的正整數(shù)都成立,求實數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:(1)根據(jù)等差數(shù)列通項公式以及求和公式將條件化為關(guān)于首項與公差的方程組,解得(2)先化簡不等式: ,再分奇偶討論:當(dāng)為奇數(shù)時, ; 當(dāng)為偶數(shù)時, ,最后根據(jù)基本不等式以及數(shù)列單調(diào)性確定實數(shù)的取值范圍.

試題解析:(Ⅰ)設(shè)公差為,則,∴

的通項公式為

(Ⅱ) , ;

則原不等式等價于對所有的正整數(shù)都成立.

∴當(dāng)為奇數(shù)時, ; 當(dāng)為偶數(shù)時, 恒成立

又∵,當(dāng)且僅當(dāng)時取等號,

所以當(dāng)為奇數(shù)時, 的最小值為7,

當(dāng)為偶數(shù)時, 時, 的最小值為

∴不等式對所有的正整數(shù)都成立時,實數(shù)的取值范是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù).

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且是棱的中點,平面與棱交于點.

(1)求證:

(2)若,且平面平面求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在(單位:克),脂肪的攝入量控制在(單位:克),某學(xué)校食堂提供的伙食以食物和食物為主,1千克食物含蛋白質(zhì)60克,含脂肪9克,售價20元;1千克食物含蛋白質(zhì)30克,含脂肪27克,售價15元.

(1)如果某學(xué)生只吃食物,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;

(2)為了花費最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時食用食物和食物各多少千克?并求出最低需要花費的錢數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營情況良好的某種消費品專賣店以萬元的優(yōu)惠價轉(zhuǎn)讓給了尚有萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中有:①這種消費品的進(jìn)價為每件元;②該店月銷量(百件)與銷售價格(元)的關(guān)系如圖所示;③每月需各種開支元.

1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,恒成立,求的取值范圍;

2)若,是否存在實數(shù),使得,都成立?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案