【題目】設(shè)等差數(shù)列的前項和,且.
(1)求的通項公式;
(2)若不等式對所有的正整數(shù)都成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:(1)根據(jù)等差數(shù)列通項公式以及求和公式將條件化為關(guān)于首項與公差的方程組,解得.(2)先化簡不等式: ,再分奇偶討論:當(dāng)為奇數(shù)時, ; 當(dāng)為偶數(shù)時, ,最后根據(jù)基本不等式以及數(shù)列單調(diào)性確定實數(shù)的取值范圍.
試題解析:(Ⅰ)設(shè)公差為,則,∴.
∴的通項公式為.
(Ⅱ), , ;
則原不等式等價于對所有的正整數(shù)都成立.
∴當(dāng)為奇數(shù)時, ; 當(dāng)為偶數(shù)時, 恒成立
又∵,當(dāng)且僅當(dāng)時取等號,
所以當(dāng)為奇數(shù)時, 的最小值為7,
當(dāng)為偶數(shù)時, 時, 的最小值為,
∴不等式對所有的正整數(shù)都成立時,實數(shù)的取值范是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且,點是棱的中點,平面與棱交于點.
(1)求證: ;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在(單位:克),脂肪的攝入量控制在(單位:克),某學(xué)校食堂提供的伙食以食物和食物為主,1千克食物含蛋白質(zhì)60克,含脂肪9克,售價20元;1千克食物含蛋白質(zhì)30克,含脂肪27克,售價15元.
(1)如果某學(xué)生只吃食物,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;
(2)為了花費最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時食用食物和食物各多少千克?并求出最低需要花費的錢數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營情況良好的某種消費品專賣店以萬元的優(yōu)惠價轉(zhuǎn)讓給了尚有萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中有:①這種消費品的進(jìn)價為每件元;②該店月銷量(百件)與銷售價格(元)的關(guān)系如圖所示;③每月需各種開支元.
(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com