(14分)已知橢圓C的中心在坐標原點,焦點在x軸上,離心率.直線:與橢圓C相交于兩點, 且.
(1)求橢圓C的方程;
(2)點P(,0),A、B為橢圓C上的動點,當時,求證:直線AB恒過一個定點.并求出該定點的坐標.
,
解:(1)設橢圓方程為(a>b>0),  
      
 則   
 2分
得:    4分
  
  
橢圓C的方程是:   7分
(2) 當直線l不垂直于x軸時,設  
  

   10分
    
 
時,恒過定點
時,恒過定點,不符合題意舍去   12分
當直線l垂直于x軸時,若直線AB  
AB與橢圓相交于   
 
,滿足題意
綜上可知,直線恒過定點,且定點坐標為      14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C的中心在原點、焦點在軸上,橢圓C上的點到焦點的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線橢圓交于不同的兩點M,N(M,N不是左、右頂點),且以MN為直徑的圓經過橢圓的右頂點A.求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓與曲線無交點,則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓P的中心O在坐標原點,焦點在軸上,且經過點A(0,),離心率為。
(1)求橢圓P的方程;
(2)是否存在過點E(0,-4)的直線交橢圓P于兩不同點,且滿足,若存在,求直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點;圓的圓心在射線上,圓過原點,且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當時,求k與b的關系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,、是橢圓上關于原點對稱的兩點,是橢圓上任意一點,且直線、的斜率分別為、,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的兩個焦點和短軸兩個頂點是有一個內角為的菱形的四個頂點,則橢圓的離心率為         

查看答案和解析>>

同步練習冊答案