已知直線l1:3x+4y-5=0與直線l2:2x-3y+8=0交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)求過點(diǎn)P且與l1垂直的直線l的方程.
分析:(1)聯(lián)立方程組成方程組得
3x+4y-5=0
2x-3y+8=0
,求方程組的解,即可得點(diǎn)P的坐標(biāo);
(2)設(shè)過點(diǎn)P且與l1垂直的直線l的方程為:4x-3y+c=0,將P(-1,2)代入方程,可求得c的值,從而可得方程.
解答:解:(1)聯(lián)立方程組成方程組得
3x+4y-5=0
2x-3y+8=0
,解得
x=-1
y=2
,∴P(-1,2)
(2)設(shè)過點(diǎn)P且與l1垂直的直線l的方程為:4x-3y+c=0
將P(-1,2)代入方程得:-4-6+c=0
∴c=10
∴過點(diǎn)P且與l1垂直的直線l的方程為:4x-3y+10=0
點(diǎn)評(píng):本題考查兩直線的交點(diǎn),考查兩條直線的垂直關(guān)系,解題的關(guān)鍵是利用兩條直線垂直時(shí),斜率之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1
3
x-y+2=0,l2:3x+
3
y-5=0,則直線l1與l2的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:3x+4y-5=0和l2:3x+5y-6=0相交,則它們的交點(diǎn)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1
3
x-y+2=0,求過點(diǎn)(1,0)且與直線l1的夾角為60°的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)為P.
(Ⅰ)求交點(diǎn)P的坐標(biāo);
(Ⅱ)求過點(diǎn)P且平行于直線l3:x-2y-1=0的直線方程;
(Ⅲ)求過點(diǎn)P且垂直于直線l3:x-2y-1=0直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案