【題目】如圖,矩形中,,的中點,現(xiàn)將折起,使得平面及平面都與平面垂直.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】分析:(1)分別取中點,分別連接,可證明平面平面可得,又∴四邊形為平行四邊形,,從而可得平面;(2)為原點,,正半軸,建立空間直角坐標(biāo)系,可得平面的一個法向量利用向量垂直數(shù)量積為零列方程組求出平面的法向量,由空間向量夾角余弦公式可得結(jié)果.

詳解(1)分別取中點,分別連接,則

∵平面及平面都與平面垂直,

平面平面,

由線面垂直性質(zhì)定理知,又

∴四邊形為平行四邊形,

平面,∴平面.

(2)如圖,以為原點,正半軸,建立空間直角坐標(biāo)系,則.

平面的一個法向量,設(shè)平面的法向量,

,取

注意到此二面角為鈍角,

故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護一件珍貴文物,博物館需要在一種無色玻璃的密封保護罩內(nèi)充入保護氣體.假設(shè)博物館需要支付的總費用由兩部分組成:①罩內(nèi)該種氣體的體積比保護罩的容積少0.5立方米,且每立方米氣體費用1千元;②需支付一定的保險費用,且支付的保險費用與保護罩容積成反比,當(dāng)容積為2立方米時,支付的保險費用為8千元.

1)求博物館支付總費用y與保護罩容積V之間的函數(shù)關(guān)系式;

2)求博物館支付總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.

為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型②

(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;

(2)你認(rèn)為用哪個模型得到的預(yù)測值更可靠?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中,正確的命題是_________

①已知點,的面積為10.

②若一個三角形,采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原三角形面積的

③過點且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為.

④直線與直線的距離是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成.已知半球的直徑是6 cm,圓柱筒高為2 cm.

1這種“浮球”的體積是多少cm3結(jié)果精確到0.1?

2要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:

時間

第4天

第32天

第60天

第90天

價格(千元)

23

30

22

7

(1)寫出價格關(guān)于時間的函數(shù)關(guān)系式;(表示投放市場的第天);

(2)銷售量與時間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個警亭有直道相通,已知的正北方向6千米處,的正東方向千米處.

(1)警員甲從出發(fā),沿行至點處,此時,求的距離;

(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時出發(fā),甲的速度為3千米/小時,乙的速度為6千米/小時.兩人通過專用對講機保持聯(lián)系,乙到達(dá)后原地等待,直到甲到達(dá)時任務(wù)結(jié)束.若對講機的有效通話距離不超過9千米,試問兩人通過對講機能保持聯(lián)系的總時長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點A0,-b)和Ba,0)的直線與原點的距離為

1)求橢圓的方程.

2)已知定點E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案