試在拋物線上求一點(diǎn)P,使其到焦點(diǎn)F的距離與到的距離之和最小,則該點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在中,、、分別為內(nèi)角所對(duì)的邊,且滿足:
.
(1) 證明:;
(2) 如圖,點(diǎn)是外一點(diǎn),設(shè),
,當(dāng)時(shí),求平面四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知結(jié)論:“在正中,中點(diǎn)為,若內(nèi)一點(diǎn)到各邊的距離都相等,則”.若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長(zhǎng)都相等的四面體中,若的中心為,四面體內(nèi)部一點(diǎn)到四面體各面的距離都相等,
則( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
求“方程的解”有如下解題思路:設(shè),則在上單調(diào)遞減,且,所以原方程有唯一解.類(lèi)比上述解題思路求解:已知函數(shù)的定義域?yàn)?sub>,對(duì)任意,有,且,則方程的解集為_(kāi)_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知為虛數(shù)單位,,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
)由-1,0,1,2,3這五個(gè)數(shù)中選三個(gè)不同的數(shù)組成二次函數(shù)的系數(shù)。
(1)開(kāi)口向下的拋物線有幾條?
(2)開(kāi)口向上且不過(guò)原點(diǎn)的拋物線有多少條?
(3)與x軸的正、負(fù)半軸各有一個(gè)交點(diǎn)的拋物線有多少條?
解:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若以F為焦點(diǎn)的拋物線上的兩點(diǎn)A、B滿足,則弦AB的中點(diǎn)到準(zhǔn)線的距離為_(kāi)___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com