已知函數(shù)()
(1)當(dāng)a=2時(shí),求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、在公共定義域D上,滿足<<,那么就稱的“伴隨函數(shù)”.已知函數(shù),,若在區(qū)間(1,+∞)上,函數(shù)的“伴隨函數(shù)”,求a的取值范圍。
(1)的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2;
(2)

試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、恒成立問題等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,對求導(dǎo),判斷函數(shù)的單調(diào)性,函數(shù)遞增,則在區(qū)間2個(gè)端點(diǎn)處取得最大值和最小值;第二問,由新定義將題目轉(zhuǎn)化為在(1,+∞)上恒成立,對求導(dǎo),對的根進(jìn)行討論,判斷函數(shù)的單調(diào)性,求出最大值,令最大值小于0,同理,對求導(dǎo),求最大值,需要注意如果最大值能夠取到,則最大值小于0,若最大值取不到,則最大值小于等于0.
(1)當(dāng)a=2時(shí),,則
當(dāng)x∈[e,e2]時(shí),,即此時(shí)函數(shù)單調(diào)遞增,
的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2.      4分
(2)若在區(qū)間(1,+∞)上,函數(shù)、的“伴隨函數(shù)”,
<<,令在(1,+∞)上恒成立,在(1,+∞)上恒成立,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500089782193.png" style="vertical-align:middle;" />
①若,由
當(dāng),即時(shí),在(x2,+∞)上,有,此時(shí)函數(shù)單調(diào)遞增,并且在該區(qū)間上有,不合題意.
當(dāng)x2<x1=1,即a≥1時(shí),同理可知在區(qū)間(1,+∞)上,有,不合題意.
②若a≤,則有2a  1≤0,此時(shí)在區(qū)間(1,+∞)上,有p'(x)<0,此時(shí)函數(shù)p(x)單調(diào)遞減,要使p(x)<0恒成立,只需要滿足,即
此時(shí),        9分
,則h(x)在(1,+∞)上為減函數(shù),則h(x)<h(1)=,所以              11分
即a的取值范圍是。              12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)討論的單調(diào)性.
(2)證明:,e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;
(2)若,函數(shù)在區(qū)間內(nèi)有唯一零點(diǎn),求的取值范圍;
(3)若對任意的,均有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間上(    )
A.有最大值,但無最小值
B.有最大值,也有最小值
C.無最大值,但有最小值
D.既無最大值,也無最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知都是定義在上的函數(shù),,,且,,,對于數(shù)列,任取正整數(shù),則前k項(xiàng)和大于的概率是(   )
A.  B.  C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=xex,則( 。
A.1是f(x)的極小值點(diǎn)
B.﹣1是f(x)的極小值點(diǎn)
C.1是f(x)的極大值點(diǎn)
D.﹣1是f(x)的極大值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是奇函數(shù),當(dāng)時(shí),,當(dāng)時(shí),的最小值為1,則的值等于( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案