16.中心在原點(diǎn),且與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1有相同焦點(diǎn)的等軸雙曲線的標(biāo)準(zhǔn)方程是(  )
A.y2-x2=1B.x2-y2=1C.x2-y2=2D.y2-x2=2

分析 求出橢圓的焦點(diǎn)坐標(biāo),利用等軸雙曲線求出實(shí)半軸,即可得到雙曲線的方程.

解答 解:中心在原點(diǎn),且與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的焦點(diǎn)坐標(biāo)為($\sqrt{2}$,0),
依題意,設(shè)等軸雙曲線的方程設(shè)為:x2-y2=m(m>0),則$\sqrt{2m}=\sqrt{2}$,解得m=1,
中心在原點(diǎn),且與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1有相同焦點(diǎn)的等軸雙曲線的標(biāo)準(zhǔn)方程是:x2-y2=1.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的激動(dòng)的性質(zhì),雙曲線方程的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}滿足an+2-an+1=an+1-an,n∈N*,且a5=$\frac{π}{2}$若函數(shù)f(x)=sin2x-2sin2$\frac{x}{2}$,記yn=f(an)則數(shù)列{yn}的前9項(xiàng)和為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知x,y∈R,則u(x,y)=x2+$\frac{81}{{x}^{2}}$-2xy+$\frac{18}{x}$$\sqrt{2-{y}^{2}}$的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在非等腰△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,且a=3,c=4,C=2A.
(Ⅰ)求cosA及b的值;
(Ⅱ)求cos($\frac{π}{3}$-2A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x}^{2}-3x-\frac{3}{4}$,求使函數(shù)大于0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.45°=$\frac{π}{4}$弧度,135°=$\frac{3π}{4}$弧度,360°=2π弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.為使輸出S=$\frac{2013}{2014}$,則( 。
A.k≤2013?B.k≤2014?C.k≥2013?D.k≥2014?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=$\frac{x}{x^2+x+1}$對(duì)x1,x2∈R,求證:|f(x1)-f(x2)|≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知直線2x-(m+$\frac{1}{3m}$)y-2=0(m>0)與直線l:x=-1,拋物線C:y2=4x及x軸分別相交于A,B,F(xiàn)三點(diǎn),點(diǎn)F是拋物線的焦點(diǎn),若$\overrightarrow{AB}$=2$\overrightarrow{BF}$,則m=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案