設(shè)f(x)是R上的偶函數(shù),且在(-∞,0)上為減函數(shù),若x1<0,且x1+x2>0,則(  )
分析:先利用x1<0且x1+x2>0把自變量都轉(zhuǎn)化到區(qū)間(-∞,0)上,再根據(jù)f(x)在(-∞,0)上是增函數(shù),可得函數(shù)值大小關(guān)系,再根據(jù)偶函數(shù)性質(zhì)即可求出答案.
解答:解:因為x1<0且x1+x2>0,故0>x1>-x2
因為函數(shù)f(x)在(-∞,0)上是減函數(shù),所以有f(x1)<f(-x2).
又因為f(x)是R上的偶函數(shù),所以f(-x2)=f(x2).
所以有f(x1)<f(x2).
故選C.
點評:本題主要考查抽象函數(shù)的單調(diào)性和奇偶性.抽象函數(shù)是相對于給出具體解析式的函數(shù)來說的,它雖然沒有具體的表達式,但是有一定的對應(yīng)法則,滿足一定的性質(zhì),這種對應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問題的關(guān)鍵.抽象函數(shù)的抽象性賦予它豐富的內(nèi)涵和多變的思維價值,可以考查類比猜測,合情推理的探究能力和創(chuàng)新精神.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義域為R的周期函數(shù),且f(x)最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)試求出函數(shù)f(x)在[-1,2]上的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,b=
12
,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是R,對于任意實數(shù)m,n,恒有f(m+n)=f(m)+f(n),
(1)求證f(0)=0;
(2)判斷f(x)在R上的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,數(shù)學(xué)公式,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案