將函數(shù)f(x)=sin(
1
2
x-
π
3
)的圖象沿x軸向右平移a(a>0)個單位,所得圖象關(guān)于y軸對稱,則a的最小值為( 。
A、
π
6
B、
π
3
C、
6
D、
3
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得所得圖象對應(yīng)的函數(shù)解析式為y=sin(
1
2
x-
a
2
-
π
3
),再根據(jù)所得圖象關(guān)于y軸對稱,可得-
a
2
-
π
3
=kπ±
π
2
,k∈z,由此求得a的最小正值.
解答: 解:將函數(shù)f(x)=sin(
1
2
x-
π
3
)的圖象沿x軸向右平移a(a>0)個單位,所得圖象對應(yīng)的函數(shù)解析式為 y=sin[
1
2
(x-a)-
π
3
]=sin(
1
2
x-
a
2
-
π
3
),
再根據(jù)所得圖象關(guān)于y軸對稱,可得-
a
2
-
π
3
=kπ±
π
2
,k∈z,即a=-2kπ-
12
,或a=-2kπ+
π
3
,故a的最小正值為
π
3
,
故選:B.
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4
1
2
+2-2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
m2
+
y2
m2-1
=1(m>1)上一點P到其左、右焦點的距離分別為3和1,則m=(  )
A、6B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
2sinθ+6
+
y2
sinθ-2
=1所表示的曲線為( 。
A、焦點在x軸上的橢圓
B、焦點在y軸上的橢圓
C、焦點在x軸上的雙曲線
D、焦點在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓ax2+by2+ab=0(a<b<0)的焦點坐標(biāo)為( 。
A、(±
a-b
,0)
B、(±
b-a
,0)
C、(0.±
a-b
D、(0,±
b-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、24+
3
B、24+2
3
C、12+4
3
D、12+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,Sn=2n+3,則an等于( 。
A、2n-1
B、2n-1-1
C、
5,n=1
2n-1,n≥2
D、2n-1+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半徑為1的⊙O?平面α,PO⊥α,直線l?α,且l和⊙O相切,若PO=2
2
,則點P到l的距離( 。
A、
7
B、
5
C、3
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集I=A∪B中有x個元素,(∁IA)∪(∁IB)中有y個元素,若A∩B非空,則A∩B的元素個數(shù)為( 。
A、yB、xC、x-yD、x+y

查看答案和解析>>

同步練習(xí)冊答案