【題目】已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}的通項an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Sn與logabn+1的大小,并證明你的結(jié)論.
【答案】(1)bn=3n-2.(2)當a>1時,Sn>logabn+1,當0<a<1時,Sn<logabn+1
【解析】
(1)設(shè)數(shù)列{bn}的公差為d,
由題意得∴bn=3n-2.
(2)由bn=3n-2,知Sn=loga(1+1)+loga+…+loga
=loga
而logabn+1=loga,于是,比較Sn與logabn+1的大小比較
(1+1)與的大小.
取n=1,有1+1=>=,
取n=2,有(1+1)>>=.
推測(1+1)…>,(*)
①當n=1時,已驗證(*)式成立;
②假設(shè)n=k(k≥1)時(*)式成立,即(1+1)>,
則當n=k+1時,
(1+1)>.
∵-=>0,∴,
從而(1+1),即當n=k+1時,(*)式成立.由①②知(*)式對任意正整數(shù)n都成立.于是,當a>1時,Sn>logabn+1,當0<a<1時,Sn<logabn+1
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的方程為.曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標方程;
(2)若與有三個不同的公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人投籃命中的概率分別為與,各自相互獨立.現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結(jié)束后甲的進球數(shù)比乙的進球數(shù)多1的概率;
(2)設(shè)表示比賽結(jié)束后甲、乙兩人進球數(shù)的差的絕對值,求的概率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列是的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.
(1)直接寫出,,,的值;
(2)當時,試用,表示,并說明理由;
(3)試用數(shù)學歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一款智能學習APP,學習內(nèi)容包含文章學習和視頻學習兩類,且這兩類學習互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學習積分的概率分布表如表1所示,視頻學習積分的概率分布表如表2所示.
(1)現(xiàn)隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學習情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com