【題目】已知函數(shù)的圖象的一條對(duì)稱軸為,其中為常數(shù),且,給出下述四個(gè)結(jié)論:
①函數(shù)的最小正周期為;
②將函數(shù)的圖象向左平移所得圖象關(guān)于原點(diǎn)對(duì)稱;
③函數(shù)在區(qū)間,上單調(diào)遞增;
④函數(shù)在區(qū)間上有個(gè)零點(diǎn).
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.①③④D.①②④
【答案】C
【解析】
根據(jù)函數(shù)的一條對(duì)稱軸是,且,算出,進(jìn)而求出最小正周期,即可判斷①;寫出將函數(shù)的圖象向左平移個(gè)單位后的式子,即可判斷②;當(dāng)時(shí),,進(jìn)而判斷③;由,得,,解得,由,得,進(jìn)而判斷④.
解:當(dāng)時(shí),,,
,,又因?yàn)?/span>,所以,,
函數(shù)的最小正周期,①正確;
將函數(shù)的圖象向左平移,
得,
顯然的圖象不關(guān)于原點(diǎn)對(duì)稱,②錯(cuò)誤;
當(dāng)時(shí),,
所以在區(qū)間上單調(diào)遞增,③正確;
由,得,,解得,
由,得,
因?yàn)?/span>,所以,,,,,
所以函數(shù)在區(qū)間上有個(gè)零點(diǎn),④正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為( )
A.B.C.D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),集合.
(1)若集合中有且僅有個(gè)整數(shù),求實(shí)數(shù)的取值范圍;
(2)集合,若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,國(guó)家深入推進(jìn)精準(zhǔn)脫貧,加大資金投入,強(qiáng)化社會(huì)幫扶,為了更好的服務(wù)于人民,派調(diào)查組到某農(nóng)村去考察和指導(dǎo)工作.該地區(qū)有100戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為2萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當(dāng)?shù)卣疀Q定動(dòng)員部分農(nóng)民從事水果加工,據(jù)估計(jì),若能動(dòng)員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.
(1)若動(dòng)員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動(dòng)員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
當(dāng)時(shí),判斷直線與曲線的位置關(guān)系;
若直線與曲線相切于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三角形三邊長(zhǎng)都是整數(shù)且至少有一個(gè)內(nèi)角為,則稱該三角形為“完美三角形”.有關(guān)“完美三角形”有以下命題:
(1)存在直角三角形是“完美三角形”
(2)不存在面積是整數(shù)的“完美三角形”
(3)周長(zhǎng)為12的“完美三角形”中面積最大為;
(4)若兩個(gè)“完美三角形”有兩邊對(duì)應(yīng)相等,且它們面積相等,則這兩個(gè)“完美三角形”全等.
以上真命題有______.(寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲品店提供、兩種口味的飲料,且每種飲料均有大杯、中杯、小杯三種容量.甲、乙二人各隨機(jī)點(diǎn)一杯飲料,且甲只點(diǎn)大杯,乙點(diǎn)中杯或小杯,則甲、乙所點(diǎn)飲料的口味相同的概率為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com